File: GB_cuda_jit_AxB_dot3_phase3_vssp.cuh

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (249 lines) | stat: -rw-r--r-- 8,475 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/template/GB_cuda_jit_AxB_dot3_phase3_vssp.cuh
//------------------------------------------------------------------------------

// This version uses a binary-search algorithm, when the sizes nnzA and nnzB
// are far apart in size, neither is very spare nor dense, for any size of N.

// Both the grid and block are 1D, so blockDim.x is the # threads in a
// threadblock, and the # of threadblocks is grid.x

//  int64_t start          <- start of vector pairs for this kernel
//  int64_t end            <- end of vector pairs for this kernel
//  int64_t *Bucket        <- array of pair indices for all kernels 
//  GrB_Matrix C         <- result matrix 
//  GrB_Matrix M         <- mask matrix
//  GrB_Matrix A         <- input matrix A
//  GrB_Matrix B         <- input matrix B

__global__ void GB_cuda_AxB_dot3_phase3_vssp_kernel
(
    int64_t start,
    int64_t end,
    int64_t *Bucket,    // do the work defined by Bucket [start:end-1]
    GrB_Matrix C,
    GrB_Matrix M,
    GrB_Matrix A,
    GrB_Matrix B,
    const void *theta
)
{

    #if !GB_A_IS_PATTERN
    const GB_A_TYPE *__restrict__ Ax = (GB_A_TYPE *)A->x  ;
    #endif
    #if !GB_B_IS_PATTERN
    const GB_B_TYPE *__restrict__ Bx = (GB_B_TYPE *)B->x  ;
    #endif
          GB_C_TYPE *__restrict__ Cx = (GB_C_TYPE *)C->x  ;
          GB_Ci_SIGNED_TYPE *__restrict__ Ci = (GB_Ci_SIGNED_TYPE *) C->i ;
    const GB_Mi_TYPE *__restrict__ Mi = (GB_Mi_TYPE *) M->i ;
    #if GB_M_IS_HYPER
    const GB_Mj_TYPE *__restrict__ Mh = (GB_Mj_TYPE *) M->h ;
    #endif

    ASSERT (GB_A_IS_HYPER || GB_A_IS_SPARSE) ;
    const GB_Ai_TYPE *__restrict__ Ai = (GB_Ai_TYPE *) A->i ;
    const GB_Ap_TYPE *__restrict__ Ap = (GB_Ap_TYPE *) A->p ;

    ASSERT (GB_B_IS_HYPER || GB_B_IS_SPARSE) ;
    const GB_Bi_TYPE *__restrict__ Bi = (GB_Bi_TYPE *) B->i ;
    const GB_Bp_TYPE *__restrict__ Bp = (GB_Bp_TYPE *) B->p ;

    #if GB_A_IS_HYPER
    const int64_t anvec = A->nvec ;
    const GB_Aj_TYPE *__restrict__ Ah = (GB_Aj_TYPE *) A->h ;
    const void *A_Yp = (void *) ((A->Y == NULL) ? NULL : A->Y->p) ;
    const void *A_Yi = (void *) ((A->Y == NULL) ? NULL : A->Y->i) ;
    const void *A_Yx = (void *) ((A->Y == NULL) ? NULL : A->Y->x) ;
    const int64_t A_hash_bits = (A->Y == NULL) ? 0 : (A->Y->vdim - 1) ;
    #endif

    #if GB_B_IS_HYPER
    const int64_t bnvec = B->nvec ;
    const GB_Bj_TYPE *__restrict__ Bh = (GB_Bj_TYPE *) B->h ;
    const void *B_Yp = (void *) ((B->Y == NULL) ? NULL : B->Y->p) ;
    const void *B_Yi = (void *) ((B->Y == NULL) ? NULL : B->Y->i) ;
    const void *B_Yx = (void *) ((B->Y == NULL) ? NULL : B->Y->x) ;
    const int64_t B_hash_bits = (B->Y == NULL) ? 0 : (B->Y->vdim - 1) ;
    #endif

    // zombie count (only maintained by threadIdx.x == zero)
    uint64_t zc = 0 ;

    GB_M_NVALS (mnz) ;
    int all_in_one = ( (end - start) == mnz ) ;

    thread_block_tile<tile_sz> tile = tiled_partition<tile_sz>( this_thread_block());

    // Main loop over pairs in Bucket [start:end-1]
    for (int64_t kk = start+ blockIdx.x; 
                 kk < end ;  
                 kk += gridDim.x)
    {

        int64_t pair_id = all_in_one ? kk : Bucket[ kk ];

        int64_t i = Mi[pair_id];
        int64_t k = Ci[pair_id] >> 4;
        // assert: Ci [pair_id] & 0xF == GB_BUCKET_VSSP

        // j = k or j = Mh [k] if C and M are hypersparse
        int64_t j = GBh_M (Mh, k) ;

        // find A(:,i):  A is always sparse or hypersparse
        int64_t pA, pA_end ;
        #if GB_A_IS_HYPER
        GB_hyper_hash_lookup (GB_Ap_IS_32, GB_Aj_IS_32,
            Ah, anvec, Ap, A_Yp, A_Yi, A_Yx, A_hash_bits, i, &pA, &pA_end) ;
        #else
        pA     = Ap [i] ;
        pA_end = Ap [i+1] ;
        #endif

        // find B(:,j):  B is always sparse or hypersparse
        int64_t pB, pB_end ;
        #if GB_B_IS_HYPER
        GB_hyper_hash_lookup (GB_Bp_IS_32, GB_Bj_IS_32,
            Bh, bnvec, Bp, B_Yp, B_Yi, B_Yx, B_hash_bits, j, &pB, &pB_end) ;
        #else
        pB     = Bp [j] ;
        pB_end = Bp [j+1] ;
        #endif

        GB_DECLAREA (aki) ;
        GB_DECLAREB (bkj) ;
        GB_DECLARE_IDENTITY (cij) ;         // GB_Z_TYPE cij = identity

        bool cij_exists = false;

        int64_t nnzA = pA_end - pA;
        int64_t nnzB = pB_end - pB;

        //Search for each nonzero in the smaller vector to find intersection 

        if (nnzA <= nnzB)
        {
            //------------------------------------------------------------------
            // A(:,i) is very sparse compared to B(:,j)
            //------------------------------------------------------------------

            while (pA+ threadIdx.x< pA_end && pB< pB_end)
            {
                int64_t ia = Ai [pA+ threadIdx.x] ;
                int64_t ib = Bi [pB] ;
                 /*
                if (ia < ib)
                { 
                    // A(ia,i) appears before B(ib,j)
                    pA++ ;
                }
                */
                pA += ( ia < ib )*blockDim.x;
                if (ib < ia)
                { 
                    // B(ib,j) appears before A(ia,i)
                    // discard all entries B(ib:ia-1,j)
                    int64_t pleft = pB + 1 ;
                    int64_t pright = pB_end - 1 ;
                    GB_trim_binary_search (ia, Bi, GB_Bi_IS_32,
                        &pleft, &pright) ;
                    //ASSERT (pleft > pB) ;
                    pB = pleft ;
                }
                else if (ia == ib) // ia == ib == k
                { 
                    // A(k,i) and B(k,j) are the next entries to merge
                    GB_DOT_MERGE (pA, pB);
                    //GB_DOT_TERMINAL (cij) ;   // break if cij == terminal
                    pA+= blockDim.x ;
                    pB++ ;
                }
            }
        }
        else
        {
            //------------------------------------------------------------------
            // B(:,j) is very sparse compared to A(:,i)
            //------------------------------------------------------------------

            while (pA < pA_end && pB+ threadIdx.x < pB_end)
            {
                int64_t ia = Ai [pA] ;
                int64_t ib = Bi [pB + threadIdx.x] ;

                pB += ( ib < ia)*blockDim.x;

                if (ia < ib)
                { 
                    // A(ia,i) appears before B(ib,j)
                    // discard all entries A(ia:ib-1,i)
                    int64_t pleft = pA + 1 ;
                    int64_t pright = pA_end - 1 ;
                    GB_trim_binary_search (ib, Ai, GB_Ai_IS_32,
                        &pleft, &pright) ;
                    //ASSERT (pleft > pA) ;
                    pA = pleft ;
                }
                /*
                else if (ib < ia)
                { 
                    // B(ib,j) appears before A(ia,i)
                    pB++ ;
                }
                */
                else if (ia == ib)// ia == ib == k
                { 
                    // A(k,i) and B(k,j) are the next entries to merge
                    GB_DOT_MERGE (pA, pB) ;
                    //GB_DOT_TERMINAL (cij) ;   // break if cij == terminal
                    pA++ ;
                    pB+=blockDim.x ;
                }
            }

        }
        GB_CIJ_EXIST_POSTCHECK ;
	this_thread_block().sync();

	cij_exists = tile.any( cij_exists) ;
	tile.sync ( ) ;
      
	#if  !GB_C_ISO
        if ( cij_exists)
        {
	    cij = GB_cuda_tile_reduce_ztype (tile, cij) ;
	}
        #endif

	if (threadIdx.x == 0) 
	{
            if (cij_exists)
	    {
	        Ci[pair_id] = i ;
	        GB_PUTC (cij, Cx, pair_id) ;
            }
	    else 
	    {
		zc++; 
		//printf(" %lld, %lld is zombie %d!\n",i,j,zc);
		Ci[pair_id] = GB_ZOMBIE ( i ) ;
            }
	}
    }
    this_thread_block().sync();

    //--------------------------------------------------------------------------
    // update the zombie count
    //--------------------------------------------------------------------------

    if (threadIdx.x ==0 && zc > 0)
    {
        // this threadblock accumulates its zombie count into the global
        // zombie count
        //printf("vssp warp %d zombie count = %d\n", blockIdx.x, zc);
        GB_cuda_atomic_add<uint64_t>( &(C->nzombies), zc) ;
        //printf(" vssp Czombie = %lld\n",C->nzombies);
    }
}