1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/template/GB_cuda_jit_AxB_dot3_phase3_vssp.cuh
//------------------------------------------------------------------------------
// This version uses a binary-search algorithm, when the sizes nnzA and nnzB
// are far apart in size, neither is very spare nor dense, for any size of N.
// Both the grid and block are 1D, so blockDim.x is the # threads in a
// threadblock, and the # of threadblocks is grid.x
// int64_t start <- start of vector pairs for this kernel
// int64_t end <- end of vector pairs for this kernel
// int64_t *Bucket <- array of pair indices for all kernels
// GrB_Matrix C <- result matrix
// GrB_Matrix M <- mask matrix
// GrB_Matrix A <- input matrix A
// GrB_Matrix B <- input matrix B
__global__ void GB_cuda_AxB_dot3_phase3_vssp_kernel
(
int64_t start,
int64_t end,
int64_t *Bucket, // do the work defined by Bucket [start:end-1]
GrB_Matrix C,
GrB_Matrix M,
GrB_Matrix A,
GrB_Matrix B,
const void *theta
)
{
#if !GB_A_IS_PATTERN
const GB_A_TYPE *__restrict__ Ax = (GB_A_TYPE *)A->x ;
#endif
#if !GB_B_IS_PATTERN
const GB_B_TYPE *__restrict__ Bx = (GB_B_TYPE *)B->x ;
#endif
GB_C_TYPE *__restrict__ Cx = (GB_C_TYPE *)C->x ;
GB_Ci_SIGNED_TYPE *__restrict__ Ci = (GB_Ci_SIGNED_TYPE *) C->i ;
const GB_Mi_TYPE *__restrict__ Mi = (GB_Mi_TYPE *) M->i ;
#if GB_M_IS_HYPER
const GB_Mj_TYPE *__restrict__ Mh = (GB_Mj_TYPE *) M->h ;
#endif
ASSERT (GB_A_IS_HYPER || GB_A_IS_SPARSE) ;
const GB_Ai_TYPE *__restrict__ Ai = (GB_Ai_TYPE *) A->i ;
const GB_Ap_TYPE *__restrict__ Ap = (GB_Ap_TYPE *) A->p ;
ASSERT (GB_B_IS_HYPER || GB_B_IS_SPARSE) ;
const GB_Bi_TYPE *__restrict__ Bi = (GB_Bi_TYPE *) B->i ;
const GB_Bp_TYPE *__restrict__ Bp = (GB_Bp_TYPE *) B->p ;
#if GB_A_IS_HYPER
const int64_t anvec = A->nvec ;
const GB_Aj_TYPE *__restrict__ Ah = (GB_Aj_TYPE *) A->h ;
const void *A_Yp = (void *) ((A->Y == NULL) ? NULL : A->Y->p) ;
const void *A_Yi = (void *) ((A->Y == NULL) ? NULL : A->Y->i) ;
const void *A_Yx = (void *) ((A->Y == NULL) ? NULL : A->Y->x) ;
const int64_t A_hash_bits = (A->Y == NULL) ? 0 : (A->Y->vdim - 1) ;
#endif
#if GB_B_IS_HYPER
const int64_t bnvec = B->nvec ;
const GB_Bj_TYPE *__restrict__ Bh = (GB_Bj_TYPE *) B->h ;
const void *B_Yp = (void *) ((B->Y == NULL) ? NULL : B->Y->p) ;
const void *B_Yi = (void *) ((B->Y == NULL) ? NULL : B->Y->i) ;
const void *B_Yx = (void *) ((B->Y == NULL) ? NULL : B->Y->x) ;
const int64_t B_hash_bits = (B->Y == NULL) ? 0 : (B->Y->vdim - 1) ;
#endif
// zombie count (only maintained by threadIdx.x == zero)
uint64_t zc = 0 ;
GB_M_NVALS (mnz) ;
int all_in_one = ( (end - start) == mnz ) ;
thread_block_tile<tile_sz> tile = tiled_partition<tile_sz>( this_thread_block());
// Main loop over pairs in Bucket [start:end-1]
for (int64_t kk = start+ blockIdx.x;
kk < end ;
kk += gridDim.x)
{
int64_t pair_id = all_in_one ? kk : Bucket[ kk ];
int64_t i = Mi[pair_id];
int64_t k = Ci[pair_id] >> 4;
// assert: Ci [pair_id] & 0xF == GB_BUCKET_VSSP
// j = k or j = Mh [k] if C and M are hypersparse
int64_t j = GBh_M (Mh, k) ;
// find A(:,i): A is always sparse or hypersparse
int64_t pA, pA_end ;
#if GB_A_IS_HYPER
GB_hyper_hash_lookup (GB_Ap_IS_32, GB_Aj_IS_32,
Ah, anvec, Ap, A_Yp, A_Yi, A_Yx, A_hash_bits, i, &pA, &pA_end) ;
#else
pA = Ap [i] ;
pA_end = Ap [i+1] ;
#endif
// find B(:,j): B is always sparse or hypersparse
int64_t pB, pB_end ;
#if GB_B_IS_HYPER
GB_hyper_hash_lookup (GB_Bp_IS_32, GB_Bj_IS_32,
Bh, bnvec, Bp, B_Yp, B_Yi, B_Yx, B_hash_bits, j, &pB, &pB_end) ;
#else
pB = Bp [j] ;
pB_end = Bp [j+1] ;
#endif
GB_DECLAREA (aki) ;
GB_DECLAREB (bkj) ;
GB_DECLARE_IDENTITY (cij) ; // GB_Z_TYPE cij = identity
bool cij_exists = false;
int64_t nnzA = pA_end - pA;
int64_t nnzB = pB_end - pB;
//Search for each nonzero in the smaller vector to find intersection
if (nnzA <= nnzB)
{
//------------------------------------------------------------------
// A(:,i) is very sparse compared to B(:,j)
//------------------------------------------------------------------
while (pA+ threadIdx.x< pA_end && pB< pB_end)
{
int64_t ia = Ai [pA+ threadIdx.x] ;
int64_t ib = Bi [pB] ;
/*
if (ia < ib)
{
// A(ia,i) appears before B(ib,j)
pA++ ;
}
*/
pA += ( ia < ib )*blockDim.x;
if (ib < ia)
{
// B(ib,j) appears before A(ia,i)
// discard all entries B(ib:ia-1,j)
int64_t pleft = pB + 1 ;
int64_t pright = pB_end - 1 ;
GB_trim_binary_search (ia, Bi, GB_Bi_IS_32,
&pleft, &pright) ;
//ASSERT (pleft > pB) ;
pB = pleft ;
}
else if (ia == ib) // ia == ib == k
{
// A(k,i) and B(k,j) are the next entries to merge
GB_DOT_MERGE (pA, pB);
//GB_DOT_TERMINAL (cij) ; // break if cij == terminal
pA+= blockDim.x ;
pB++ ;
}
}
}
else
{
//------------------------------------------------------------------
// B(:,j) is very sparse compared to A(:,i)
//------------------------------------------------------------------
while (pA < pA_end && pB+ threadIdx.x < pB_end)
{
int64_t ia = Ai [pA] ;
int64_t ib = Bi [pB + threadIdx.x] ;
pB += ( ib < ia)*blockDim.x;
if (ia < ib)
{
// A(ia,i) appears before B(ib,j)
// discard all entries A(ia:ib-1,i)
int64_t pleft = pA + 1 ;
int64_t pright = pA_end - 1 ;
GB_trim_binary_search (ib, Ai, GB_Ai_IS_32,
&pleft, &pright) ;
//ASSERT (pleft > pA) ;
pA = pleft ;
}
/*
else if (ib < ia)
{
// B(ib,j) appears before A(ia,i)
pB++ ;
}
*/
else if (ia == ib)// ia == ib == k
{
// A(k,i) and B(k,j) are the next entries to merge
GB_DOT_MERGE (pA, pB) ;
//GB_DOT_TERMINAL (cij) ; // break if cij == terminal
pA++ ;
pB+=blockDim.x ;
}
}
}
GB_CIJ_EXIST_POSTCHECK ;
this_thread_block().sync();
cij_exists = tile.any( cij_exists) ;
tile.sync ( ) ;
#if !GB_C_ISO
if ( cij_exists)
{
cij = GB_cuda_tile_reduce_ztype (tile, cij) ;
}
#endif
if (threadIdx.x == 0)
{
if (cij_exists)
{
Ci[pair_id] = i ;
GB_PUTC (cij, Cx, pair_id) ;
}
else
{
zc++;
//printf(" %lld, %lld is zombie %d!\n",i,j,zc);
Ci[pair_id] = GB_ZOMBIE ( i ) ;
}
}
}
this_thread_block().sync();
//--------------------------------------------------------------------------
// update the zombie count
//--------------------------------------------------------------------------
if (threadIdx.x ==0 && zc > 0)
{
// this threadblock accumulates its zombie count into the global
// zombie count
//printf("vssp warp %d zombie count = %d\n", blockIdx.x, zc);
GB_cuda_atomic_add<uint64_t>( &(C->nzombies), zc) ;
//printf(" vssp Czombie = %lld\n",C->nzombies);
}
}
|