1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
//------------------------------------------------------------------------------
// GraphBLAS/CUDA/jit_kernels/GB_jit_kernel_cuda_AxB_dot3.cu
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// This file: Copyright (c) 2024-2025, NVIDIA CORPORATION. All rights reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_jit_kernel_cuda_AxB_dot3: C<M>=A'*B using the dot3 method on the GPU.
#define GB_FREE_ALL ;
#if GB_C_ISO
// FIXME
#error "kernel undefined for C iso"
#endif
// FIXME: Figure out how to use graphblas-specific INFINITY macro
#ifndef INFINITY
#define INFINITY std::numeric_limits<double>::max()
#endif
//------------------------------------------------------------------------------
// dot3 kernel launch geometry
//------------------------------------------------------------------------------
// FIXME: some duplicates here
// FIXME: tune these values. Bigger chunk_size leads to fewer binary searches
// with GB_cuda_ek_slice_setup, for example.
#define chunk_size 128
#define log2_chunk_size 7
#define tile_sz 32
#define log2_tile_sz 5
#define shared_vector_size 256
#define blocksize 32
#define threads_per_block 32
//------------------------------------------------------------------------------
// operators
//------------------------------------------------------------------------------
#if GB_C_ISO
#define GB_DOT_TERMINAL( c ) break
#define GB_DOT_MERGE(pA,pB) \
{ \
cij_exists = true ; \
}
#define GB_CIJ_EXIST_POSTCHECK
#else
#define GB_DOT_TERMINAL( c ) GB_IF_TERMINAL_BREAK ( c, zterminal )
#if GB_IS_PLUS_PAIR_REAL_SEMIRING
// cij += A(k,i) * B(k,j), for merge operation (plus_pair_real semiring)
#if GB_Z_IGNORE_OVERFLOW
// plus_pair for int64, uint64, float, or double
#define GB_DOT_MERGE(pA,pB) cij++ ;
#define GB_CIJ_EXIST_POSTCHECK cij_exists = (cij != 0) ;
#else
// plus_pair semiring for small integers
#define GB_DOT_MERGE(pA,pB) \
{ \
cij_exists = true ; \
cij++ ; \
}
#define GB_CIJ_EXIST_POSTCHECK
#endif
#else
// cij += A(k,i) * B(k,j), for merge operation (general case)
#define GB_DOT_MERGE(pA,pB) \
{ \
GB_GETA ( aki, Ax, pA, ) ; /* aki = A(k,i) */ \
GB_GETB ( bkj, Bx, pB, ) ; /* bkj = B(k,j) */ \
cij_exists = true ; \
GB_MULTADD ( cij, aki, bkj, i, k, j ) ; /* cij += aki * bkj */ \
}
#define GB_CIJ_EXIST_POSTCHECK
#endif
#endif
//------------------------------------------------------------------------------
// dot3 buckets
//------------------------------------------------------------------------------
#define NBUCKETS 4
// NBUCKETS buckets: computed by up to NBUCKETS-1 kernel launches (zombies need
// no work...), each using different kernels (with different configurations
// depending on the bucket).
// dot3: C<M>=A'B, M is sparse or hyper, C is sparse or hyper
// 32 kernels A,B: (hyper,sparse,bitmap,full)^2 x (M and C are sparse/hyper)
typedef enum
{
GB_BUCKET_ZOMBIE = 0, // C(i,j) is a zombie (not a bucket)
// both A and B are sparse/hyper:
GB_BUCKET_VSVS = 1, // vsvs: both A(:,i) and B(:,j) are very sparse
GB_BUCKET_MERGEPATH = 2, // mp: use the merge-path method
GB_BUCKET_VSSP = 3, // vssp: very sparse x sparse, binary search
// A is sparse/hyper and B is bitmap/full,
// A is bitmap/full and B is sparse/hyper
GB_BUCKET_VSDN = 1, // vsdn: the sparse vector is very sparse
GB_BUCKET_SPDN = 2, // spdn: sparse vector has lots of entries;
// use a whole warp for each dot product
}
GB_bucket_code ; // FIXME: rename GB_dot3_bucket_code
// These may use another bucket enum:
// two full/(sparse,hyper) kernels:
// // CUDA kernel: spdn, handles 4 buckets:
// // A(:,i) is dense and B(:,j) is very sparse (< 256 entries)
// GB_BUCKET_DNVS = 2,
// // A(:,i) is dense and B(:,j) is sparse (>= 256 entries)
// GB_BUCKET_DNSP = 3,
// a sparse/full kernel
// // A(:,i) is very sparse (< 256 entries) and B(:,j) is dense
// GB_BUCKET_VSDN = 4,
// // A(:,i) is sparse (>= 256 entries) and B(:,j) is dense
// GB_BUCKET_SPDN = 5,
// a sparse/bitmap kernel
// a bitmap/bitmap kernel
// a bitmap/sparse kernel
// ...
#include "GB_cuda_tile_sum_uint64.cuh"
#include "GB_cuda_tile_reduce_ztype.cuh"
//------------------------------------------------------------------------------
// CUDA device kernels for each case
//------------------------------------------------------------------------------
#include "GB_cuda_ek_slice.cuh"
#if ((GB_A_IS_BITMAP || GB_A_IS_FULL) && (GB_B_IS_BITMAP || GB_B_IS_FULL))
// dense-dense
#include "GB_cuda_jit_AxB_dot3_dense_phase1.cuh"
#include "GB_cuda_jit_AxB_dot3_phase3_dndn.cuh"
#else
// sparse-sparse, sparse-dense, or dense-sparse
#undef GB_FREE_ALL
#define GB_FREE_ALL \
{ \
GB_FREE_MEMORY (&Nanobuckets, Nb_size) ; \
GB_FREE_MEMORY (&Blockbucket, Bb_size) ; \
GB_FREE_MEMORY (&Bucketp, Bup_size) ; \
GB_FREE_MEMORY (&offset, O_size) ; \
GB_FREE_MEMORY (&Bucket, Bu_size) ; \
}
#include "GB_cuda_jit_AxB_dot3_phase1.cuh"
#include "GB_cuda_jit_AxB_dot3_phase2.cuh"
#include "GB_cuda_jit_AxB_dot3_phase2end.cuh"
#if ((GB_A_IS_SPARSE || GB_A_IS_HYPER) && \
(GB_B_IS_SPARSE || GB_B_IS_HYPER))
// sparse-sparse
#include "GB_cuda_jit_AxB_dot3_phase3_mp.cuh"
#include "GB_cuda_jit_AxB_dot3_phase3_vsvs.cuh"
#include "GB_cuda_jit_AxB_dot3_phase3_vssp.cuh"
#else
// sparse-dense or dense-sparse
#include "GB_cuda_jit_AxB_dot3_phase3_spdn.cuh"
#include "GB_cuda_jit_AxB_dot3_phase3_vsdn.cuh"
#endif
#endif
//------------------------------------------------------------------------------
// host function to launch the CUDA kernels for dot3 on the GPU
//------------------------------------------------------------------------------
// #include "GB_cuda_timer.hpp"
extern "C"
{
GB_JIT_CUDA_KERNEL_DOT3_PROTO (GB_jit_kernel) ;
}
GB_JIT_CUDA_KERNEL_DOT3_PROTO (GB_jit_kernel)
{
// GpuTimer kernel_timer ;
//--------------------------------------------------------------------------
// get callback functions
//--------------------------------------------------------------------------
#ifdef GB_JIT_RUNTIME
// get callback functions
GB_GET_CALLBACKS ;
GB_free_memory_f GB_free_memory = my_callback->GB_free_memory_func ;
GB_malloc_memory_f GB_malloc_memory = my_callback->GB_malloc_memory_func ;
#endif
//--------------------------------------------------------------------------
// declare workspace
//--------------------------------------------------------------------------
#if ((GB_A_IS_BITMAP || GB_A_IS_FULL) && (GB_B_IS_BITMAP || GB_B_IS_FULL))
// dense-dense case requires no workspace
#else
// sparse-sparse, sparse-dense, and dense-sparse requires workspace
int64_t *Nanobuckets = NULL ; size_t Nb_size = 0 ;
int64_t *Blockbucket = NULL ; size_t Bb_size = 0 ;
int64_t *Bucket = NULL ; size_t Bu_size = 0 ;
int64_t *Bucketp = NULL ; size_t Bup_size = 0 ;
int64_t *offset = NULL ; size_t O_size = 0 ;
#endif
//--------------------------------------------------------------------------
// get problem size
//--------------------------------------------------------------------------
const GB_M_NVALS (mnz) ;
int nblks_1 = (mnz + chunk_size - 1) / chunk_size ;
int number_of_blocks_1 = GB_IMIN (nblks_1, chunk_size * number_of_sms) ;
// most methods can use these launch geometries:
// printf ("\nmnz: %ld\n", mnz) ;
// printf ("number_of_blocks_1: %d\n", number_of_blocks_1) ;
// printf ("threads_per_block: %d\n", threads_per_block) ;
dim3 grid_1 (number_of_blocks_1) ;
dim3 block (threads_per_block) ;
//--------------------------------------------------------------------------
// C<M>=A'*B via jitified kernels
//--------------------------------------------------------------------------
#if ((GB_A_IS_BITMAP || GB_A_IS_FULL) && (GB_B_IS_BITMAP || GB_B_IS_FULL))
{
//----------------------------------------------------------------------
// (full or bitmap) times (full or bitmap)
//----------------------------------------------------------------------
// full/bitmap cases, which means we don't need buckets and zombies.
// This is a much simpler kernel as a result, it only does the i,j
// lookup and stores the values in Mi and Ci.
// Idea is to have each task work on a continguous block of columns of
// C Note: for small tests, mnz is small so ntasks is be governed by
// chunk_size, not chunk_size*number_of_sms. For large problems in
// production, chunk_size is less important since ntasks will likely be
// bounded by chunk_size*number_of_sms (say 128*80 = 10,240 on a V100,
// for the default chunk_size of 128).
//----------------------------------------------------------------------
// dense case, phase 1
//----------------------------------------------------------------------
// kernel_timer.Start();
GB_cuda_AxB_dot3_dense_phase1_kernel <<<grid_1, block, 0, stream>>>
(C, M) ;
CUDA_OK (cudaStreamSynchronize(stream)) ; // is this needed?
// kernel_timer.Stop();
// printf ("(GPU phase1 %12.6g ms )\n", kernel_timer.Elapsed()) ;
//----------------------------------------------------------------------
// dense case, phase "3" (FIXME: rename to dense_phase2)
//----------------------------------------------------------------------
int work_per_thread = 8 ;
int blocksz = 64 ;
work_per_thread = 8 ;
if (mnz > 1024)
{
blocksz = 512 ;
work_per_thread = 64 ;
}
int gridsz = GB_ICEIL (mnz, work_per_thread*blocksz) ;
dim3 grid_2 (gridsz) ;
// kernel_timer.Start();
GB_cuda_AxB_dot3_phase3_dndn_kernel <<grid_2, block, 0, stream>>
(C, M, A, B, theta) ;
}
#else
{
//----------------------------------------------------------------------
// (sparse or hyper) times (sparse or hyper)
// (sparse or hyper) times (bitmap or full)
// (bitmap or full) times (sparse or hyper)
//----------------------------------------------------------------------
//----------------------------------------------------------------------
// construct the tasks for phase1 and phase2
//----------------------------------------------------------------------
// # of threads in phase1 and phase2 kernel launches are related
// # by the size of the warp. ph2_task = ph1_task/32 for example
int64_t blockbuckets_size = NBUCKETS * number_of_blocks_1 ;
int64_t nanobuckets_size = blockbuckets_size * threads_per_block ;
Nanobuckets = (int64_t *) GB_MALLOC_MEMORY (nanobuckets_size, sizeof (int64_t), &Nb_size) ;
Blockbucket = (int64_t *) GB_MALLOC_MEMORY (blockbuckets_size, sizeof (int64_t), &Bb_size) ;
Bucketp = (int64_t *) GB_MALLOC_MEMORY (NBUCKETS+1, sizeof (int64_t), &Bup_size) ;
offset = (int64_t *) GB_MALLOC_MEMORY (NBUCKETS+1, sizeof (int64_t), &O_size) ;
Bucket = (int64_t *) GB_MALLOC_MEMORY (mnz, sizeof (int64_t), &Bu_size) ;
memset (offset, 0, (NBUCKETS+1) * sizeof (int64_t)) ;
memset (Bucketp, 0, (NBUCKETS+1) * sizeof (int64_t)) ;
if (Nanobuckets == NULL || Blockbucket == NULL || Bucketp == NULL
|| Bucket == NULL || offset == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
// FIXME: do async with streams
// FIXME: do we need any of these?
//CUDA_OK (cudaMemsetAsync(Nanobuckets, 0,
// nanobuckets_size * sizeof(int64_t), stream));
//CUDA_OK (cudaMemsetAsync(Blockbucket, 0,
// blockbuckets_size * sizeof(int64_t), stream));
CUDA_OK (cudaMemsetAsync(Bucketp, 0,
(NBUCKETS+1) * sizeof(int64_t), stream));
CUDA_OK (cudaMemsetAsync(offset, 0,
NBUCKETS * sizeof(int64_t), stream));
//CUDA_OK (cudaMemsetAsync(Bucket, 0,
// mnz * sizeof(int64_t), stream));
//----------------------------------------------------------------------
// phase1 and phase2: place each C(i,j) in a bucket
//----------------------------------------------------------------------
CUDA_OK (cudaMemAdvise( Bucketp, (NBUCKETS+1) * sizeof ( int64_t),
cudaMemAdviseSetPreferredLocation, cudaCpuDeviceId));
CUDA_OK (cudaMemAdvise( Bucketp, (NBUCKETS+1) * sizeof ( int64_t),
cudaMemAdviseSetAccessedBy, device));
CUDA_OK (cudaMemAdvise( offset, NBUCKETS * sizeof ( int64_t),
cudaMemAdviseSetPreferredLocation, cudaCpuDeviceId));
CUDA_OK (cudaMemAdvise( offset, NBUCKETS * sizeof ( int64_t),
cudaMemAdviseSetAccessedBy, device));
//----------------------------------------------------------------------
// phase1: assign each C(i,j) to a bucket, and count them
//----------------------------------------------------------------------
// kernel_timer.Start();
// printf ("\nLaunching sparse phase1:\n") ;
GB_jit_AxB_dot3_phase1_kernel <<<grid_1, block, 0, stream>>>
(Nanobuckets, Blockbucket, C, M, A, B) ;
CUDA_OK (cudaStreamSynchronize (stream)) ;
// kernel_timer.Stop();
// printf ("(GPU phase1 %12.6g ms )\n", kernel_timer.Elapsed()) ;
//----------------------------------------------------------------------
// phase2: cumsum across the blockbuckets, propagate to thread level
//----------------------------------------------------------------------
// # of blocks for phase2:
int number_of_blocks_2 = (number_of_blocks_1 + threads_per_block - 1)
/ threads_per_block ;
dim3 grid_2 (number_of_blocks_2) ;
// kernel_timer.Start();
// printf ("Launching sparse phase2:\n") ;
GB_cuda_AxB_dot3_phase2_kernel <<<grid_2, block, 0, stream>>>
(Blockbucket, offset, number_of_blocks_1) ;
CUDA_OK (cudaStreamSynchronize (stream)) ;
int64_t s = offset [0] ;
C->nzombies = s ;
printf ("\nzombies: %ld\n", offset [0]) ;
bool all_in_one = false ;
for (int bucket = 1 ; bucket < NBUCKETS+1 ; bucket++)
{
Bucketp[bucket] = s ;
s += offset [bucket] ;
printf ("bucket %d: %ld\n", bucket, offset [bucket]) ;
if ((Bucketp [bucket] - Bucketp [bucket-1] ) == mnz)
{
all_in_one = true ;
}
}
printf ("mnz: %ld in buckets : %ld\n", mnz, s) ;
if (mnz != s)
{
printf ("Abort! Missing %ld entries\n", mnz-s) ;
fflush (stdout) ;
fflush (stderr) ;
abort ( ) ;
}
// kernel_timer.Stop();
// printf ("(GPU phase2 %12.6g ms )\n", kernel_timer.Elapsed()) ;
//----------------------------------------------------------------------
// phase2end
//----------------------------------------------------------------------
if (!all_in_one)
{
// kernel_timer.Start();
// printf ("Launching sparse phase2end:\n") ;
GB_cuda_AxB_dot3_phase2end_kernel <<<grid_1, block, 0, stream>>>
(Nanobuckets, Blockbucket, Bucketp, Bucket, offset, C, mnz) ;
CUDA_OK (cudaStreamSynchronize (stream)) ;
// kernel_timer.Stop();
// printf ("(GPU phase2end %12.6g ms)\n",kernel_timer.Elapsed());
}
//----------------------------------------------------------------------
// phase3: do the numerical work
//----------------------------------------------------------------------
// kernel_timer.Start();
for (int bucket = 1 ; bucket < NBUCKETS ; bucket++)
{
int64_t start = Bucketp [bucket] ;
int64_t end = Bucketp [bucket + 1] ;
int64_t cnz_in_bucket = end - start ;
int gridsz, blocksz, work_per_thread ;
// printf ("bucket %d, cnz_in_bucket %ld\n", bucket, cnz_in_bucket);
if (cnz_in_bucket > 0)
{
#if ((GB_A_IS_SPARSE || GB_A_IS_HYPER) && \
(GB_B_IS_SPARSE || GB_B_IS_HYPER))
switch (bucket)
{
//------------------------------------------------------
// vsvs bucket: both vectors very sparse
//------------------------------------------------------
case GB_BUCKET_VSVS :
{
// FIXME: should be a function of cuda architecture
blocksz = 256 ;
work_per_thread = 4 ;
if (cnz_in_bucket > (2<<12))
{
blocksz = 512 ;
}
gridsz = GB_ICEIL (cnz_in_bucket,
work_per_thread*blocksz) ;
gridsz = GB_IMIN (gridsz, 256*number_of_sms) ;
dim3 grid_3 (gridsz) ;
GB_cuda_AxB_dot3_phase3_vsvs_kernel
<<<grid_3, block, 0, stream>>>
(start, end, Bucket, C, M, A, B, theta) ;
}
break ;
//------------------------------------------------------
// mergepath bucket:
//------------------------------------------------------
case GB_BUCKET_MERGEPATH :
{
// FIXME: should be a function of cuda architecture
blocksz = 32 ;
work_per_thread = 256 ;
if (cnz_in_bucket > (2<<20))
{
work_per_thread = 1024 ;
}
gridsz = GB_ICEIL (cnz_in_bucket, work_per_thread) ;
if ((gridsz < number_of_sms) &&
(cnz_in_bucket > (2<<20)))
{
gridsz = number_of_sms ;
}
gridsz = GB_IMIN (gridsz, 256*number_of_sms) ;
dim3 grid_3 (gridsz) ;
// each thread block creates Ai_s and Bj_s; each
// are int64_t arrays of size shared_vector_size
size_t shared_bytes = 0 ;
// shared_vector_size *
// sizeof (int64_t) * 2 ;
GB_cuda_AxB_dot3_phase3_mp_kernel
<<<grid_3, block, shared_bytes, stream>>>
(start, end, Bucket, C, M, A, B, theta) ;
}
break ;
//------------------------------------------------------
// vssp bucket:
//------------------------------------------------------
case GB_BUCKET_VSSP :
{
// FIXME: should be a function of cuda architecture
blocksz = 32 ;
work_per_thread = 256 ;
if (cnz_in_bucket > (2<<20))
{
work_per_thread = 1024 ;
}
gridsz = GB_ICEIL (cnz_in_bucket, work_per_thread) ;
if ((gridsz < number_of_sms) &&
(cnz_in_bucket > (2<<20)))
{
gridsz = number_of_sms ;
}
gridsz = GB_IMIN (gridsz, 256*number_of_sms) ;
dim3 grid_3 (gridsz) ;
GB_cuda_AxB_dot3_phase3_vssp_kernel
<<<grid_3, block, 0, stream>>>
(start, end, Bucket, C, M, A, B, theta) ;
}
break ;
}
#else
switch (bucket)
{
//------------------------------------------------------
// vsdn bucket: one thread per C(i,j) dot product
//------------------------------------------------------
case GB_BUCKET_VSDN :
{
// FIXME: should be a function of cuda architecture
blocksz = 256 ;
work_per_thread = 4 ;
if (cnz_in_bucket > (2<<12))
{
blocksz = 512 ;
}
gridsz = GB_ICEIL (cnz_in_bucket,
work_per_thread*blocksz) ;
gridsz = GB_IMIN (gridsz, 256*number_of_sms) ;
dim3 grid_3 (gridsz) ;
GB_cuda_AxB_dot3_phase3_vsdn_kernel
<<<grid_3, block, 0, stream>>>
(start, end, Bucket, C, M, A, B, theta) ;
}
break ;
//------------------------------------------------------
// spdn bucket: one warp per C(i,j) dot product
//------------------------------------------------------
case GB_BUCKET_SPDN :
{
// FIXME: should be a function of cuda architecture
blocksz = 32 ;
work_per_thread = 256 ;
if (cnz_in_bucket > (2<<20))
{
work_per_thread = 1024 ;
}
gridsz = GB_ICEIL (cnz_in_bucket, work_per_thread) ;
if ((gridsz < number_of_sms) &&
(cnz_in_bucket > (2<<20)))
{
gridsz = number_of_sms ;
}
gridsz = GB_IMIN (gridsz, 256*number_of_sms) ;
dim3 grid_3 (gridsz) ;
GB_cuda_AxB_dot3_phase3_spdn_kernel
<<<grid_3, block, 0, stream>>>
(start, end, Bucket, C, M, A, B, theta) ;
break ;
}
}
#endif
}
}
}
#endif
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
CUDA_OK (cudaStreamSynchronize (stream)) ;
// kernel_timer.Stop();
// printf ("(GPU phase3 %12.6g ms, rate=%12.6g)\n",
// kernel_timer.Elapsed(), mnz/(1000*kernel_timer.Elapsed())) ;
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
|