File: GB_jit_kernel_cuda_select_sparse.cu

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (385 lines) | stat: -rw-r--r-- 12,444 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
using namespace cooperative_groups ;

#include "GB_cuda_ek_slice.cuh"
#include "GB_cuda_cumsum.cuh"

#define GB_FREE_WORKSPACE                   \
{                                           \
    GB_FREE_MEMORY (&W, W_size) ;           \
    GB_FREE_MEMORY (&W_2, W_2_size) ;       \
    GB_FREE_MEMORY (&W_3, W_3_size) ;       \
}

#undef GB_FREE_ALL
#define GB_FREE_ALL GB_FREE_WORKSPACE ;

#define chunk_size 1024
#define log2_chunk_size 10

//------------------------------------------------------------------------------
// GB_cuda_select_sparse_phase1: construct Keep array
//------------------------------------------------------------------------------

// Compute Keep array
__global__ void GB_cuda_select_sparse_phase1
(
    int64_t *Keep,
    GrB_Matrix A,
    const void *ythunk
)
{
    #if ( GB_DEPENDS_ON_I )
    const GB_Ai_SIGNED_TYPE *__restrict__ Ai = (GB_Ai_SIGNED_TYPE *) A->i ;
    #endif

    #if ( GB_DEPENDS_ON_J )
        #if ( GB_A_IS_HYPER )
        const GB_Aj_TYPE *__restrict__ Ah = (GB_Aj_TYPE *) A->h ;
        #endif
    const GB_Ap_TYPE *__restrict__ Ap = (GB_Ap_TYPE *) A->p ;
    #endif

    #if ( GB_DEPENDS_ON_X )
    const GB_A_TYPE *__restrict__ Ax = (GB_A_TYPE *) A->x ;
    #endif

    #if ( GB_DEPENDS_ON_Y )
    const GB_Y_TYPE y = * ((GB_Y_TYPE *) ythunk) ;
    #endif
    GB_A_NHELD (anz) ;

    #if ( GB_DEPENDS_ON_J )
        const int64_t anvec = A->nvec ;
        for (int64_t pfirst = blockIdx.x << log2_chunk_size ;
                     pfirst < anz ;
                     pfirst += gridDim.x << log2_chunk_size )
        {
            int64_t my_chunk_size, anvec1, kfirst, klast ;
            float slope ;
            GB_cuda_ek_slice_setup (Ap, anvec, anz, pfirst, chunk_size,
                &kfirst, &klast, &my_chunk_size, &anvec1, &slope) ;

            for (int64_t pdelta = threadIdx.x ;
                         pdelta < my_chunk_size ;
                         pdelta += blockDim.x)
            {
                int64_t pA ;
                int64_t k = GB_cuda_ek_slice_entry (&pA, pdelta, pfirst, Ap,
                    anvec1, kfirst, slope) ;
                int64_t j = GBh_A (Ah, k) ;

                #if ( GB_DEPENDS_ON_I )
                int64_t i = Ai [pA] ;
                #endif

                // keep = fselect (A (i,j)), true if A(i,j) is kept, else false
                GB_TEST_VALUE_OF_ENTRY (keep, pA) ;
                Keep [pA] = keep ;
            }
        }
    #else
        int tid = blockIdx.x * blockDim.x + threadIdx.x ;
        int nthreads = blockDim.x * gridDim.x ;

        for (int64_t pA = tid; pA < anz; pA += nthreads)
        {
            #if ( GB_DEPENDS_ON_I )
            int64_t i = Ai [pA] ;
            #endif

            GB_TEST_VALUE_OF_ENTRY (keep, pA) ;
            Keep [pA] = keep ;
        }

    #endif
}

//------------------------------------------------------------------------------
// GB_cuda_select_sparse_phase2:
//------------------------------------------------------------------------------

__global__ void GB_cuda_select_sparse_phase2
(
    int64_t *Map,
    GrB_Matrix A,
    int64_t *Ak_keep,
    GB_Ci_TYPE *Ci,
    GB_C_TYPE *Cx
)
{
    const GB_Ap_TYPE *__restrict__ Ap = (GB_Ap_TYPE *) A->p ;
    const GB_Ai_TYPE *__restrict__ Ai = (GB_Ai_TYPE *) A->i ;
    #if (!GB_ISO_SELECT)
    const GB_A_TYPE *__restrict__ Ax = (GB_A_TYPE *) A->x ;
    #endif
    GB_A_NHELD (anz) ;

    const int64_t anvec = A->nvec ;

    for (int64_t pfirst = blockIdx.x << log2_chunk_size ;
                 pfirst < anz ;
                 pfirst += gridDim.x << log2_chunk_size )
    {
        int64_t my_chunk_size, anvec1, kfirst, klast ;
        float slope ;
        GB_cuda_ek_slice_setup (Ap, anvec, anz, pfirst, chunk_size,
            &kfirst, &klast, &my_chunk_size, &anvec1, &slope) ;

        for (int64_t pdelta = threadIdx.x ;
                     pdelta < my_chunk_size ;
                     pdelta += blockDim.x)
        {
            int64_t pA = pfirst + pdelta ;
            int64_t pC = Map [pA] ;     // Note: pC is off-by-1 (see below).
            if (Map [pA-1] < pC)
            {
                // This entry is kept; Keep [pA] was 1 but the contents of the
                // Keep has been overwritten by the Map array using an
                // inclusive cumsum.  Keep [pA] (before being overwritten) is
                // identical to the expression (Map [pA-1] < pC).

                // the A(i,j) is in the kA-th vector of A:
                int64_t kA = GB_cuda_ek_slice_entry (&pA, pdelta, pfirst, Ap,
                    anvec1, kfirst, slope) ;

                // Map is offset by 1 since it was computed as an inclusive
                // cumsum, so decrement pC here to get the actual position in
                // Ci,Cx.
                pC-- ;
                Ci [pC] = Ai [pA] ;

                // Cx [pC] = Ax [pA] ;
                GB_SELECT_ENTRY (Cx, pC, Ax, pA) ;

                // save the name of the vector kA that holds this entry in A,
                // for the new position of this entry in C at pC.
                Ak_keep [pC] = kA ;
            }
        }
    }
}

__global__ void GB_cuda_select_sparse_phase3
(
    int64_t anz,
    int64_t *Map,
    int64_t *Ak_keep,
    int64_t *Ck_delta
)
{
    int tid = blockIdx.x * blockDim.x + threadIdx.x ;
    int nthreads = blockDim.x * gridDim.x ;

    for (int64_t pA = tid; pA < anz; pA += nthreads)
    {
        int64_t pC = Map [pA] ;
        if (Map [pA-1] < pC)
        {
            pC-- ;
            Ck_delta [pC] = (Ak_keep [pC] != Ak_keep [pC - 1]) ;
        }
    }
}

__global__ void GB_cuda_select_sparse_phase4
(
    GrB_Matrix A,
    int64_t cnz,
    int64_t *Ak_keep,
    int64_t *Ck_map,
    GB_Cp_TYPE *Cp,
    GB_Cj_TYPE *Ch
)
{
    #if ( GB_A_IS_HYPER ) 
    const GB_Aj_TYPE *__restrict__ Ah = (GB_Aj_TYPE *) A->h;
    #endif

    int tid = blockIdx.x * blockDim.x + threadIdx.x ;
    int nthreads = blockDim.x * gridDim.x ;

    for (int64_t pC = tid; pC < cnz; pC += nthreads)
    {
        if (Ck_map [pC] != Ck_map [pC - 1])
        {
            int64_t kA = Ak_keep [pC] ;
            Cp [Ck_map[pC] - 1] = pC ;
            Ch [Ck_map[pC] - 1] = GBh_A (Ah, kA) ;
        }
    }
}

//------------------------------------------------------------------------------
// select sparse, host method
//------------------------------------------------------------------------------

extern "C"
{
    GB_JIT_CUDA_KERNEL_SELECT_SPARSE_PROTO (GB_jit_kernel) ;
}

GB_JIT_CUDA_KERNEL_SELECT_SPARSE_PROTO (GB_jit_kernel)
{

    //--------------------------------------------------------------------------
    // get callback functions
    //--------------------------------------------------------------------------

    #ifdef GB_JIT_RUNTIME
    // get callback functions
    GB_GET_CALLBACKS ;
    GB_free_memory_f GB_free_memory = my_callback->GB_free_memory_func ;
    GB_malloc_memory_f GB_malloc_memory = my_callback->GB_malloc_memory_func ;
    GB_bix_alloc_f GB_bix_alloc = my_callback->GB_bix_alloc_func ;
    #endif

    //--------------------------------------------------------------------------
    // check inputs and declare workspace
    //--------------------------------------------------------------------------
    GrB_Info info ;
    int64_t *W = NULL, *W_2 = NULL, *W_3 = NULL,
        *Ak_keep = NULL, *Ck_delta = NULL,
        *Keep = NULL ;
    size_t W_size = 0, W_2_size = 0, W_3_size = 0 ;
    int64_t cnz = 0 ;

    ASSERT (GB_A_IS_HYPER || GB_A_IS_SPARSE) ;

    dim3 grid (gridsz) ;
    dim3 block (blocksz) ;

    //--------------------------------------------------------------------------
    // phase 1: determine which entries of A to keep
    //--------------------------------------------------------------------------

    // Phase 1: Keep [p] = 1 if Ai,Ax [p] is kept, 0 otherwise; then cumsum

    W = (int64_t *) GB_MALLOC_MEMORY (A->nvals + 1, sizeof (int64_t), &W_size) ;
    if (W == NULL)
    {
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }

    // shift by one, to define Keep [-1] as 0
    W [0] = 0;      // placeholder for easier end-condition
    Keep = W + 1 ;  // Keep has size A->nvals and starts at W [1]

    GB_cuda_select_sparse_phase1 <<<grid, block, 0, stream>>>
        (Keep, A, ythunk) ;
    CUDA_OK (cudaGetLastError ( )) ;  // FIXME add after all kernel launches
    CUDA_OK (cudaStreamSynchronize (stream)) ;

    //--------------------------------------------------------------------------
    // phase1b: Map = cumsum (Keep)
    //--------------------------------------------------------------------------

    // in-place cumsum, overwriting Keep with its cumsum, then becomes Map
    GB_OK (GB_cuda_cumsum (Keep, Keep, A->nvals, stream,
        GB_CUDA_CUMSUM_INCLUSIVE)) ;
    CUDA_OK (cudaStreamSynchronize (stream)) ;

    int64_t *Map = Keep ;             // Keep has been replaced with Map
    cnz = Map [A->nvals - 1] ;        // total # of entries kept, for C

    GB_OK (GB_bix_alloc (C, cnz, GxB_HYPERSPARSE, false, true, GB_ISO_SELECT)) ;
    C->nvals = cnz ;

    if (cnz == 0) {
        // C is empty; nothing more to do
        printf ("C is empty, iso %d\n", C->iso) ;
        GB_FREE_WORKSPACE ;
        return (GrB_SUCCESS) ;
    }

    // allocate workspace
    W_2 = (int64_t *) GB_MALLOC_MEMORY (cnz + 1, sizeof (int64_t), &W_2_size) ;
    W_3 = (int64_t *) GB_MALLOC_MEMORY (cnz + 1, sizeof (int64_t), &W_3_size) ;
    if (W_2 == NULL || W_3 == NULL)
    {
        // out of memory
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }

    // shift by one: to define Ck_delta [-1] as 0
    W_2 [0] = 0 ;
    Ck_delta = W_2 + 1 ;

    // shift by one: to define Ak_keep [-1] as -1
    W_3 [0] = -1 ;
    Ak_keep = W_3 + 1 ;

    //--------------------------------------------------------------------------
    // Phase 2: Build Ci, Cx, and Ak_keep
    //--------------------------------------------------------------------------
    
    GB_cuda_select_sparse_phase2 <<<grid, block, 0, stream>>>
        (Map, A, Ak_keep, (GB_Ci_TYPE *) C->i, (GB_C_TYPE *) C->x) ;
    CUDA_OK (cudaGetLastError ( )) ;
    CUDA_OK (cudaStreamSynchronize (stream)) ;

    //--------------------------------------------------------------------------
    // phase 3:
    //--------------------------------------------------------------------------

    // Phase 3a: Build Ck_delta
    GB_cuda_select_sparse_phase3 <<<grid, block, 0, stream>>>
        (A->nvals, Map, Ak_keep, Ck_delta) ;
    CUDA_OK (cudaGetLastError ( )) ;
    CUDA_OK (cudaStreamSynchronize (stream)) ;

    // Cumsum over Ck_delta array to get Ck_map
    // Can reuse `Keep` to avoid a malloc

    // Phase 3b: Ck_map = cumsum (Ck_delta)
    GB_OK (GB_cuda_cumsum (Keep, Ck_delta, cnz, stream,
        GB_CUDA_CUMSUM_INCLUSIVE)) ;

    CUDA_OK (cudaStreamSynchronize (stream)) ;

    int64_t *Ck_map = Keep;
    int64_t cnvec = Ck_map [cnz - 1] ;

    // The caller has already allocated C->p, C->h for
    // a user-returnable empty hypersparse matrix.
    // Free them here before updating.
    GB_FREE_MEMORY (&(C->p), C->p_size) ;
    GB_FREE_MEMORY (&(C->h), C->h_size) ;

    // Allocate Cp, Ch, finalize matrix 
    C->plen = cnvec ;
    C->nvec = cnvec ;
    C->nvec_nonempty = cnvec ;  // FIXME
    C->nvals = cnz ;
    C->p = (GB_Cp_TYPE *) GB_MALLOC_MEMORY (C->plen + 1, sizeof (GB_Cp_TYPE),
        &(C->p_size)) ;
    C->h = (GB_Cj_TYPE *) GB_MALLOC_MEMORY (C->plen, sizeof (GB_Cj_TYPE),
        &(C->h_size)) ;
    if (C->p == NULL || C->h == NULL)
    {
        // The contents of C will be freed with GB_phybix_free()
        // in the caller (GB_cuda_select_sparse()) upon returning
        // an error.
        GB_FREE_ALL ;
        return (GrB_OUT_OF_MEMORY) ;
    }
    GB_Cp_TYPE *Cp = (GB_Cp_TYPE *) C->p ;

    //--------------------------------------------------------------------------
    // Phase 3: Build Cp and Ch
    //--------------------------------------------------------------------------
    GB_cuda_select_sparse_phase4 <<<grid, block, 0, stream>>>
        (A, cnz, Ak_keep, Ck_map, Cp, (GB_Cj_TYPE *) C->h) ;
    CUDA_OK (cudaGetLastError ( )) ;
    CUDA_OK (cudaStreamSynchronize (stream)) ;

    // log the end of the last vector of C
    // FIXME: isn't this just Cp [cnvec] = cnz?
    Cp [Ck_map [cnz - 1]] = cnz;

    GB_FREE_ALL ;
    return (GrB_SUCCESS) ;
}