File: gauss_demo.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (709 lines) | stat: -rw-r--r-- 26,674 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
//------------------------------------------------------------------------------
// GraphBLAS/Demo/Program/gauss_demo: Gaussian integers
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#include "graphblas_demos.h"
#define FREE_ALL ;

//------------------------------------------------------------------------------
// the Gaussian integer: real and imaginary parts
//------------------------------------------------------------------------------

typedef struct
{
    int32_t real ;
    int32_t imag ;
}
gauss ;

// repeat the typedef as a string, to give to GraphBLAS
#define GAUSS_DEFN              \
"typedef struct "               \
"{ "                            \
   "int32_t real ; "            \
   "int32_t imag ; "            \
"} "                            \
"gauss ;"

typedef struct
{
    int32_t real ;
}
badgauss ;

// just to test the JIT: same 'gauss' name but different definition
#define BAD_GAUSS_DEFN          \
"typedef struct "               \
"{ "                            \
   "int32_t real ; "            \
"} "                            \
"gauss ;"

//------------------------------------------------------------------------------
// addgauss: add two Gaussian integers
//------------------------------------------------------------------------------

// z, x, and/or y can be aliased, but the computation is correct in that case.

void addgauss (gauss *z, const gauss *x, const gauss *y)
{
    z->real = x->real + y->real ;
    z->imag = x->imag + y->imag ;
}

#define ADDGAUSS_DEFN                                           \
"void addgauss (gauss *z, const gauss *x, const gauss *y)   \n" \
"{                                                          \n" \
"    z->real = x->real + y->real ;                          \n" \
"    z->imag = x->imag + y->imag ;                          \n" \
"}"

void badaddgauss (gauss *z, const gauss *x, const gauss *y)
{
    z->real = x->real + y->real ;
    z->imag = -911 ;
}

// just to test the JIT: same name but different definition
#define BAD_ADDGAUSS_DEFN                                       \
"void addgauss (gauss *z, const gauss *x, const gauss *y)   \n" \
"{                                                          \n" \
"    z->real = x->real + y->real ;                          \n" \
"    z->imag = -911 ;                                       \n" \
"}"

//------------------------------------------------------------------------------
// multgauss: multiply two Gaussian integers
//------------------------------------------------------------------------------

// z, x, and/or y can be aliased, so temporary variables zreal and zimag
// are required.

void multgauss (gauss *z, const gauss *x, const gauss *y)
{
    int32_t zreal = x->real * y->real - x->imag * y->imag ;
    int32_t zimag = x->real * y->imag + x->imag * y->real ;
    z->real = zreal ;
    z->imag = zimag ;
}

#define MULTGAUSS_DEFN                                          \
"void multgauss (gauss *z, const gauss *x, const gauss *y)  \n" \
"{                                                          \n" \
"    int32_t zreal = x->real * y->real - x->imag * y->imag ;\n" \
"    int32_t zimag = x->real * y->imag + x->imag * y->real ;\n" \
"    z->real = zreal ;                                      \n" \
"    z->imag = zimag ;                                      \n" \
"}"

//------------------------------------------------------------------------------
// realgauss: real part of a Gaussian integer
//------------------------------------------------------------------------------

void realgauss (int32_t *z, const gauss *x)
{
    (*z) = x->real ;
}

#define REALGAUSS_DEFN                                          \
"void realgauss (int32_t *z, const gauss *x)                \n" \
"{                                                          \n" \
"    (*z) = x->real ;                                       \n" \
"}"

//------------------------------------------------------------------------------
// ijgauss: Gaussian positional op
//------------------------------------------------------------------------------

void ijgauss (int64_t *z, const gauss *x, GrB_Index i, GrB_Index j, 
    const gauss *y)
{
    (*z) = x->real + y->real + i - j ;
}

#define IJGAUSS_DEFN                                                        \
"void ijgauss (int64_t *z, const gauss *x, GrB_Index i, GrB_Index j,    \n" \
"    const gauss *y)                                                    \n" \
"{                                                                      \n" \
"    (*z) = x->real + y->real + i - j ;                                 \n" \
"}"

//------------------------------------------------------------------------------
// printgauss: print a Gauss matrix
//------------------------------------------------------------------------------

// This is a very slow way to print a large matrix, so using this approach is
// not recommended for large matrices.  However, it looks nice for this demo
// since the matrix is small.

void printgauss (GrB_Matrix A, char *name)
{
    // print the matrix
    GrB_Info info = GrB_SUCCESS ;
    GrB_Index m, n ;
    GrB_Matrix_nrows (&m, A) ;
    GrB_Matrix_ncols (&n, A) ;
    printf ("\n%s\nsize: %d-by-%d\n", name, (int) m, (int) n) ;
    for (int i = 0 ; i < m ; i++)
    {
        printf ("row %2d: ", i) ;
        for (int j = 0 ; j < n ; j++)
        {
            gauss a ;
            info = GrB_Matrix_extractElement_UDT (&a, A, i, j) ;
            if (info == GrB_NO_VALUE)
            {
                printf ("      .     ") ;
            }
            else if (info == GrB_SUCCESS)
            {
                printf (" (%4d,%4d)", a.real, a.imag) ;
            }
            else
            {
                printf (" error: %d!", info) ;
            }
        }
        printf ("\n") ;
    }
    printf ("\n") ;
}

//------------------------------------------------------------------------------
// gauss main program
//------------------------------------------------------------------------------

int main (void)
{
    fprintf (stderr, "\ngauss_demo:\n") ;

    // start GraphBLAS
    GrB_Info info = GrB_SUCCESS ;
    OK (GrB_init (GrB_NONBLOCKING)) ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, true, GxB_BURBLE)) ;

    // try using cmake to build all JIT kernels, just as a test.  This setting
    // is ignored by Windows (for MSVC it is treated as always true, and for
    // MINGW it is treated as always false).  Only Linux and Mac can change
    // this setting.
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, true, GxB_JIT_USE_CMAKE)) ;

    printf ("Gauss demo.  Note that all transposes are array transposes,\n"
        "not matrix (conjugate) transposes.\n\n") ;

    OK (GxB_Context_fprint (GxB_CONTEXT_WORLD, "World", GxB_COMPLETE, stdout));

    printf ("JIT configuration: ------------------\n") ;
    char str [5000] ;

    OK (GrB_Global_get_String (GrB_GLOBAL, str, GxB_JIT_C_COMPILER_NAME)) ;
    printf ("JIT C compiler:   [%s]\n", str) ;

    OK (GrB_Global_get_String (GrB_GLOBAL, str, GxB_JIT_C_COMPILER_FLAGS)) ;
    printf ("JIT C flags:      [%s]\n", str) ;

    OK (GrB_Global_get_String (GrB_GLOBAL, str, GxB_JIT_C_LINKER_FLAGS)) ;
    printf ("JIT C link flags: [%s]\n", str) ;

    OK (GrB_Global_get_String (GrB_GLOBAL, str, GxB_JIT_C_LIBRARIES)) ;
    printf ("JIT C libraries:  [%s]\n", str) ;

    OK (GrB_Global_get_String (GrB_GLOBAL, str, GxB_JIT_C_PREFACE)) ;
    printf ("JIT C preface:    [%s]\n", str) ;

    OK (GrB_Global_get_String (GrB_GLOBAL, str, GxB_JIT_CACHE_PATH)) ;
    printf ("JIT cache:        [%s]\n", str) ;

    int control ;
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &control, GxB_JIT_C_CONTROL)) ;
    printf ("JIT C control:    [%d]\n", control) ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_ON, GxB_JIT_C_CONTROL)) ;
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &control, GxB_JIT_C_CONTROL)) ;
    int save = control ;
    printf ("JIT C control:    [%d] reset\n", control) ;
    printf ("-------------------------------------\n\n") ;

    // revise the header for each JIT kernel; this is not required but appears
    // here just as a demo of the feature.
    OK (GrB_Global_set_String (GrB_GLOBAL,
        "// kernel generated by gauss_demo.c\n"
        "#include <math.h>\n",  GxB_JIT_C_PREFACE)) ;
    OK (GrB_Global_get_String (GrB_GLOBAL, str, GxB_JIT_C_PREFACE)) ;
    printf ("JIT C preface (revised):\n%s\n", str) ;

    // create the Gauss type but do it wrong the first time.  This will always
    // require a new JIT kernel to be compiled: if this is the first run of
    // this demo, the cache folder is empty.  Otherwise, the good gauss type
    // will be left in the cache folder from a prior run of this program, and
    // its type definition does not match this one.  The burble will say "jit:
    // loaded but must recompile" in this case.  This is skipped if the JIT
    // is disabled, since trying the BadGauss type will disable the good
    // PreJIT kernel.
    size_t sizeof_gauss ;
    if (control == GxB_JIT_ON)
    {
        GrB_Type BadGauss = NULL ;
        info = GxB_Type_new (&BadGauss, 0, "gauss", BAD_GAUSS_DEFN) ;
        if (info != GrB_SUCCESS)
        {
            // JIT disabled
            printf ("JIT: unable to determine type size: set it to %d\n",
                (int) sizeof (badgauss)) ;
            OK (GrB_Type_new (&BadGauss, sizeof (badgauss))) ;
        }
        OK (GxB_Type_fprint (BadGauss, "BadGauss", GxB_COMPLETE, stdout)) ;

        OK (GrB_Type_get_SIZE (BadGauss, &sizeof_gauss, GrB_SIZE)) ;
        CHECK (sizeof_gauss == sizeof (badgauss), GrB_PANIC) ;
        GrB_Type_free (&BadGauss) ;
    }

    // the JIT should have been successful, unless it was originally off
    #define OK_JIT \
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &control, GxB_JIT_C_CONTROL)) ; \
    CHECK (control == save, GrB_PANIC) ;
    OK_JIT

    // renable the JIT in case the JIT was disabled when GraphBLAS was built;
    // this will enable any prejit kernels.
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_ON, GxB_JIT_C_CONTROL)) ;
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &save, GxB_JIT_C_CONTROL)) ;
    printf ("jit: status %d\n", save) ;

    // create the Gauss type, and let the JIT determine the size.  This causes
    // an intentional name collision.  The new 'gauss' type does not match the
    // old one (above), and this will be safely detected.  The burble will say
    // "(jit type: changed)" and the JIT kernel will be recompiled.  The
    // Gauss type is created twice, just to exercise the JIT.
    GrB_Type Gauss = NULL ;
    for (int trial = 0 ; trial <= 1 ; trial++)
    {
        // free the type and create it yet again, to test the JIT again
        GrB_Type_free (&Gauss) ;
        info = GxB_Type_new (&Gauss, 0, "gauss", GAUSS_DEFN) ;
        if (info != GrB_SUCCESS)
        {
            // JIT disabled
            printf ("JIT: unable to determine type size: set it to %d\n",
                (int) sizeof (gauss)) ;
            OK (GrB_Type_new (&Gauss, sizeof (gauss))) ;
        }
        OK (GxB_Type_fprint (Gauss, "Gauss", GxB_COMPLETE, stdout)) ;
        OK (GrB_Type_get_SIZE (Gauss, &sizeof_gauss, GrB_SIZE)) ;
        CHECK (sizeof_gauss == sizeof (gauss), GrB_PANIC) ;
        OK_JIT
    }

    printf ("JIT: off\n") ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_OFF, GxB_JIT_C_CONTROL)) ;
    printf ("JIT: on\n") ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_ON, GxB_JIT_C_CONTROL)) ;
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &control, GxB_JIT_C_CONTROL)) ;
    printf ("jit: status %d\n", control) ;

    // create the BadAddGauss operator; use a NULL function pointer to test the
    // JIT.  Like the BadGauss type, this will always require a JIT
    // compilation, because the type will not match the good 'addgauss'
    // definition from a prior run of this demo.  Skip this if the JIT is
    // disabled, to allow PreJIT kernels to be used instead.  Creating
    // the invalid addgauss operator will disable the good PreJIT addgauss.
    GrB_BinaryOp BadAddGauss = NULL ; 
    if (control == GxB_JIT_ON)
    {
        info = GxB_BinaryOp_new (&BadAddGauss, NULL,
            Gauss, Gauss, Gauss, "addgauss", BAD_ADDGAUSS_DEFN) ;
        if (info != GrB_SUCCESS)
        {
            // JIT disabled
            printf ("JIT: unable to compile the BadAddGauss kernel\n") ;
            OK (GrB_BinaryOp_new (&BadAddGauss, (GxB_binary_function) badaddgauss,
                Gauss, Gauss, Gauss)) ;
        }
        OK (GxB_BinaryOp_fprint (BadAddGauss, "BadAddGauss", GxB_COMPLETE,
            stdout)) ;
        GrB_BinaryOp_free (&BadAddGauss) ;
    }

    OK_JIT

    // create the AddGauss operator; use a NULL function pointer to test the
    // JIT.  Causes an intentional name collision because of reusing the name
    // 'addgauss' with a different definition.  This is safely detected and
    // the kernel is recompiled.  The operator is created twice to exercise
    // the JIT.  The first trial will report "jit op: changed" and the 2nd
    // will say "jit op: ok".
    GrB_BinaryOp AddGauss = NULL ; 
    for (int trial = 0 ; trial <= 1 ; trial++)
    {
        GrB_BinaryOp_free (&AddGauss) ;
        info = GxB_BinaryOp_new (&AddGauss, NULL,
            Gauss, Gauss, Gauss, "addgauss", ADDGAUSS_DEFN) ;
        if (info != GrB_SUCCESS)
        {
            // JIT disabled
            printf ("JIT: unable to compile the AddGauss kernel\n") ;
            OK (GrB_BinaryOp_new (&AddGauss, (GxB_binary_function) addgauss,
                Gauss, Gauss, Gauss)) ;
        }
        OK (GxB_BinaryOp_fprint (AddGauss, "AddGauss", GxB_COMPLETE, stdout)) ;
        OK_JIT
    }

    printf ("JIT: off\n") ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_OFF, GxB_JIT_C_CONTROL)) ;
    printf ("JIT: on\n") ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_ON, GxB_JIT_C_CONTROL)) ;

    // renable the JIT in case the JIT was disabled when GraphBLAS was built;
    // this will enable any prejit kernels.
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_ON, GxB_JIT_C_CONTROL)) ;
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &save, GxB_JIT_C_CONTROL)) ;
    printf ("jit: status %d\n", save) ;

    // create the AddMonoid
    gauss zero ;
    zero.real = 0 ;
    zero.imag = 0 ;
    GrB_Monoid AddMonoid ;
    OK (GrB_Monoid_new_UDT (&AddMonoid, AddGauss, &zero)) ;
    OK (GxB_Monoid_fprint (AddMonoid, "AddMonoid", GxB_COMPLETE, stdout)) ;

    // create the MultGauss operator
    GrB_BinaryOp MultGauss ;
    OK (GxB_BinaryOp_new (&MultGauss, (GxB_binary_function) multgauss,
        Gauss, Gauss, Gauss, "multgauss", MULTGAUSS_DEFN)) ;
    OK (GxB_BinaryOp_fprint (MultGauss, "MultGauss", GxB_COMPLETE, stdout)) ;

    // create the GaussSemiring
    GrB_Semiring GaussSemiring ;
    OK (GrB_Semiring_new (&GaussSemiring, AddMonoid, MultGauss)) ;
    OK (GxB_Semiring_fprint (GaussSemiring, "GaussSemiring", GxB_COMPLETE,
        stdout)) ;

    // create a 4-by-4 Gauss matrix, each entry A(i,j) = (i+1,2-j),
    // except A(0,0) is missing
    GrB_Matrix A, D ;
    OK (GrB_Matrix_new (&A, Gauss, 4, 4)) ;
    OK (GrB_Matrix_new (&D, GrB_BOOL, 4, 4)) ;
    gauss a ;
    for (int i = 0 ; i < 4 ; i++)
    {
        OK (GrB_Matrix_setElement_BOOL (D, 1, i, i)) ;
        for (int j = 0 ; j < 4 ; j++)
        {
            if (i == 0 && j == 0) continue ;
            a.real = i+1 ;
            a.imag = 2-j ;
            OK (GrB_Matrix_setElement_UDT (A, &a, i, j)) ;
        }
    }
    printgauss (A, "\n=============== Gauss A matrix:\n") ;

    // a = sum (A)
    OK (GrB_Matrix_reduce_UDT (&a, NULL, AddMonoid, A, NULL)) ;
    printf ("\nsum (A) = (%d,%d)\n", a.real, a.imag) ;
    OK_JIT

    // A = A*A
    OK (GrB_mxm (A, NULL, NULL, GaussSemiring, A, A, NULL)) ;
    printgauss (A, "\n=============== Gauss A = A^2 matrix:\n") ;
    OK_JIT

    // a = sum (A)
    OK (GrB_Matrix_reduce_UDT (&a, NULL, AddMonoid, A, NULL)) ;
    printf ("\nsum (A^2) = (%d,%d)\n", a.real, a.imag) ;
    OK_JIT

    // C<D> = A*A' where A and D are sparse
    GrB_Matrix C ;
    OK (GrB_Matrix_new (&C, Gauss, 4, 4)) ;
    printgauss (C, "\nGauss C empty matrix") ;

    OK (GrB_Matrix_set_INT32 (A, GxB_SPARSE, GxB_SPARSITY_CONTROL)) ;
    OK (GrB_Matrix_set_INT32 (D, GxB_SPARSE, GxB_SPARSITY_CONTROL)) ;
    OK (GrB_mxm (C, D, NULL, GaussSemiring, A, A, GrB_DESC_T1)) ;
    printgauss (C, "\n=============== Gauss C = diag(AA') matrix:\n") ;
    OK_JIT

    // C = D*A
    GrB_Matrix_free (&D) ;
    OK (GrB_Matrix_new (&D, Gauss, 4, 4)) ;
    OK (GrB_Matrix_set_INT32 (A, GxB_SPARSE, GxB_SPARSITY_CONTROL)) ;
    OK (GrB_Matrix_set_INT32 (D, GxB_SPARSE, GxB_SPARSITY_CONTROL)) ;
    OK (GrB_Matrix_select_INT64 (D, NULL, NULL, GrB_DIAG, A, 0, NULL)) ;
    printgauss (D, "\nGauss D matrix") ;
    OK (GrB_mxm (C, NULL, NULL, GaussSemiring, D, A, NULL)) ;
    printgauss (C, "\n=============== Gauss C = D*A matrix:\n") ;
    OK_JIT

    // convert D to bitmap then back to sparse
    OK (GrB_Matrix_set_INT32 (D, GxB_SPARSE, GxB_SPARSITY_CONTROL)) ;
    OK (GrB_Matrix_set_INT32 (D, GxB_BITMAP, GxB_SPARSITY_CONTROL)) ;

    printgauss (D, "\nGauss D matrix (bitmap)") ;
    OK (GxB_Matrix_fprint (D, "D", GxB_COMPLETE, stdout)) ;
    OK (GrB_Matrix_set_INT32 (D, GxB_SPARSE, GxB_SPARSITY_CONTROL)) ;
    printgauss (D, "\nGauss D matrix (back to sparse)") ;
    OK (GxB_Matrix_fprint (D, "D", GxB_COMPLETE, stdout)) ;
    OK_JIT

    // C = A*D
    OK (GrB_mxm (C, NULL, NULL, GaussSemiring, A, D, NULL)) ;
    printgauss (C, "\n=============== Gauss C = A*D matrix:\n") ;
    OK_JIT

    // C = (1,2) then C += A*A' where C is full
    gauss ciso ;
    ciso.real = 1 ;
    ciso.imag = -2 ;
    OK (GrB_Matrix_assign_UDT (C, NULL, NULL, &ciso,
        GrB_ALL, 4, GrB_ALL, 4, NULL)) ;
    printgauss (C, "\n=============== Gauss C = (1,-2) matrix:\n") ;
    printgauss (A, "\n=============== Gauss A matrix:\n") ;
    OK (GrB_mxm (C, NULL, AddGauss, GaussSemiring, A, A, GrB_DESC_T1)) ;
    printgauss (C, "\n=============== Gauss C += A*A' matrix:\n") ;
    OK_JIT

    // C += B*A where B is full and A is sparse
    GrB_Matrix B ;
    OK (GrB_Matrix_new (&B, Gauss, 4, 4)) ;
    OK (GrB_Matrix_assign_UDT (B, NULL, NULL, &ciso,
        GrB_ALL, 4, GrB_ALL, 4, NULL)) ;
    printgauss (B, "\n=============== Gauss B = (1,-2) matrix:\n") ;
    OK (GrB_mxm (C, NULL, AddGauss, GaussSemiring, B, A, NULL)) ;
    printgauss (C, "\n=============== Gauss C += B*A:\n") ;
    OK_JIT

    // C += A*B where B is full and A is sparse
    OK (GrB_mxm (C, NULL, AddGauss, GaussSemiring, A, B, NULL)) ;
    printgauss (C, "\n=============== Gauss C += A*B:\n") ;
    OK_JIT

    // C = ciso+A
    OK (GrB_Matrix_apply_BinaryOp1st_UDT (C, NULL, NULL, AddGauss,
        (void *) &ciso, A, NULL)) ;
    printgauss (C, "\n=============== Gauss C = (1,-2) + A:\n") ;
    OK_JIT

    // C = A*ciso
    OK (GrB_Matrix_apply_BinaryOp2nd_UDT (C, NULL, NULL, MultGauss, A,
        (void *) &ciso, NULL)) ;
    printgauss (C, "\n=============== Gauss C = A*(1,-2):\n") ;
    OK_JIT

    // C = A'*ciso
    OK (GrB_Matrix_apply_BinaryOp2nd_UDT (C, NULL, NULL, MultGauss, A,
        (void *) &ciso, GrB_DESC_T0)) ;
    printgauss (C, "\n=============== Gauss C = A'*(1,-2):\n") ;
    OK_JIT

    // C = ciso*A'
    OK (GrB_Matrix_apply_BinaryOp1st_UDT (C, NULL, NULL, MultGauss,
        (void *) &ciso, A, GrB_DESC_T1)) ;
    printgauss (C, "\n=============== Gauss C = (1,-2)*A':\n") ;
    OK_JIT

    // create the RealGauss unary op
    GrB_UnaryOp RealGauss ;
    OK (GxB_UnaryOp_new (&RealGauss, (GxB_unary_function) realgauss,
        GrB_INT32, Gauss, "realgauss", REALGAUSS_DEFN)) ;
    OK (GxB_UnaryOp_fprint (RealGauss, "RealGauss", GxB_COMPLETE, stdout)) ;
    GrB_Matrix R ;
    OK (GrB_Matrix_new (&R, GrB_INT32, 4, 4)) ;
    OK_JIT

    // R = RealGauss (C)
    OK (GrB_Matrix_apply (R, NULL, NULL, RealGauss, C, NULL)) ;
    OK (GxB_Matrix_fprint (R, "R", GxB_COMPLETE, stdout)) ;
    OK_JIT

    // R = RealGauss (C')
    printgauss (C, "\n=============== R = RealGauss (C')\n") ;
    OK (GrB_Matrix_apply (R, NULL, NULL, RealGauss, C, GrB_DESC_T0)) ;
    OK (GxB_Matrix_fprint (R, "R", GxB_COMPLETE, stdout)) ;
    GrB_Matrix_free (&R) ;
    OK_JIT

    // create the IJGauss IndexUnaryOp
    GrB_IndexUnaryOp IJGauss ;
    OK (GxB_IndexUnaryOp_new (&IJGauss, (GxB_index_unary_function) ijgauss,
        GrB_INT64, Gauss, Gauss, "ijgauss", IJGAUSS_DEFN)) ;
    OK (GrB_Matrix_new (&R, GrB_INT64, 4, 4)) ;
    printgauss (C, "\n=============== C \n") ;
    OK (GrB_Matrix_apply_IndexOp_UDT (R, NULL, NULL, IJGauss, C,
        (void *) &ciso, NULL)) ;
    printf ("\nR = ijgauss (C)\n") ;
    OK (GxB_Matrix_fprint (R, "R", GxB_COMPLETE, stdout)) ;
    GrB_Index I [100], J [100], rnvals = 100 ;
    double X [100] ;
    OK (GrB_Matrix_extractTuples_FP64 (I, J, X, &rnvals, R)) ;
    for (int k = 0 ; k < rnvals ; k++)
    { 
        printf ("R (%d,%d) = %g\n", (int) I [k], (int) J [k], X [k]) ;
    }
    OK_JIT

    // C = C'
    printgauss (C, "\n=============== C\n") ;
    OK (GrB_transpose (C, NULL, NULL, C, NULL)) ;
    printgauss (C, "\n=============== C = C'\n") ;
    OK_JIT

    for (int trial = 0 ; trial <= 1 ; trial++)
    {
        GrB_Matrix Z, E ;
        int ncols = 8 ;
        int nrows = (trial == 0) ? 256 : 16 ;
        OK (GrB_Matrix_new (&Z, Gauss, nrows, ncols)) ;
        OK (GrB_Matrix_new (&E, Gauss, nrows-8, 4)) ;
        OK (GrB_Matrix_set_INT32 (Z, GrB_COLMAJOR,
            GrB_STORAGE_ORIENTATION_HINT)) ;
        GrB_Matrix Tiles [3][2] ;
        Tiles [0][0] = C ; Tiles [0][1] = D ;
        Tiles [1][0] = E ; Tiles [1][1] = E ;
        Tiles [2][0] = D ; Tiles [2][1] = C ;
        OK (GxB_Matrix_concat (Z, (GrB_Matrix *) Tiles, 3, 2, NULL)) ;
        printgauss (Z, "\n=============== Z = [C D ; E E ; D C]") ;
        OK (GxB_Matrix_fprint (Z, "Z", GxB_COMPLETE, stdout)) ;
        OK_JIT

        GrB_Matrix CTiles [4] ;
        GrB_Index Tile_nrows [2] ;
        GrB_Index Tile_ncols [2] ;
        Tile_nrows [0] = nrows / 2 ;
        Tile_nrows [1] = nrows / 2 ;
        Tile_ncols [0] = 3 ;
        Tile_ncols [1] = 5 ;
        OK (GxB_Matrix_split (CTiles, 2, 2, Tile_nrows, Tile_ncols, Z, NULL)) ;
        OK_JIT

        for (int k = 0 ; k < 4 ; k++)
        {
            printgauss (CTiles [k], "\n=============== C Tile from Z:\n") ;
            OK (GxB_Matrix_fprint (CTiles [k], "CTiles [k]", GxB_COMPLETE,
                stdout)) ;
            GrB_Matrix_free (& (CTiles [k])) ;
            OK_JIT
        }

        GrB_Matrix_free (&Z) ;
        GrB_Matrix_free (&E) ;
    }

    // try using cmake instead of a direct compile/link command
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, true, GxB_JIT_USE_CMAKE)) ;
    OK_JIT

    // C += ciso
    OK (GrB_Matrix_assign_UDT (C, NULL, AddGauss, (void *) &ciso,
        GrB_ALL, 4, GrB_ALL, 4, NULL)) ;
    printgauss (C, "\n=============== C = C + ciso\n") ;
    OK_JIT

    // split the full matrix C
    OK (GrB_Matrix_set_INT32 (C, GxB_FULL, GxB_SPARSITY_CONTROL)) ;
    GrB_Matrix STiles [4] ;
    GrB_Index Tile_nrows [2] = { 1, 3 } ;
    GrB_Index Tile_ncols [2] = { 2, 2 } ;
    OK (GxB_Matrix_split (STiles, 2, 2, Tile_nrows, Tile_ncols, C, NULL)) ;
    OK_JIT

    for (int k = 0 ; k < 4 ; k++)
    {
        printgauss (STiles [k], "\n=============== S Tile from C:\n") ;
        OK (GxB_Matrix_fprint (STiles [k], "STiles [k]", GxB_COMPLETE,
            stdout)) ;
        GrB_Matrix_free (& (STiles [k])) ;
        OK_JIT
    }

    // pause the JIT
    printf ("JIT: paused\n") ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_PAUSE, GxB_JIT_C_CONTROL)) ;
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &control, GxB_JIT_C_CONTROL)) ;
    save = control ;
    OK_JIT

    // C += ciso
    printgauss (C, "\n=============== C: \n") ;
    OK (GrB_Matrix_assign_UDT (C, NULL, AddGauss, (void *) &ciso,
        GrB_ALL, 4, GrB_ALL, 4, NULL)) ;
    printgauss (C, "\n=============== C = C + ciso (JIT paused):\n") ;
    OK_JIT

    // C *= ciso
    printgauss (C, "\n=============== C: \n") ;
    OK (GrB_Matrix_assign_UDT (C, NULL, MultGauss, (void *) &ciso,
        GrB_ALL, 4, GrB_ALL, 4, NULL)) ;
    printgauss (C, "\n=============== C = C * ciso (JIT paused):\n") ;
    OK_JIT

    // re-enable the JIT, but not to compile anything new
    printf ("JIT: run (the JIT can only run, not load or compile)\n") ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_RUN, GxB_JIT_C_CONTROL)) ;
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &control, GxB_JIT_C_CONTROL)) ;
    save = control ;
    OK_JIT

    // C += ciso, using the previous loaded JIT kernel
    OK (GrB_Matrix_assign_UDT (C, NULL, AddGauss, (void *) &ciso,
        GrB_ALL, 4, GrB_ALL, 4, NULL)) ;
    printgauss (C, "\n=============== C = C + ciso (JIT run):\n") ;
    OK_JIT

    // C *= ciso, but using generic since it is not compiled
    OK (GrB_Matrix_assign_UDT (C, NULL, MultGauss, (void *) &ciso,
        GrB_ALL, 4, GrB_ALL, 4, NULL)) ;
    printgauss (C, "\n=============== C = C * ciso (JIT not loaded):\n") ;
    OK_JIT

    // re-enable the JIT entirely
    printf ("JIT: on\n") ;
    OK (GrB_Global_set_INT32 (GrB_GLOBAL, GxB_JIT_ON, GxB_JIT_C_CONTROL)) ;
    OK (GrB_Global_get_INT32 (GrB_GLOBAL, &control, GxB_JIT_C_CONTROL)) ;
    save = control ;
    OK_JIT

    // C *= ciso, compiling a new JIT kernel if needed
    OK (GrB_Matrix_assign_UDT (C, NULL, MultGauss, (void *) &ciso,
        GrB_ALL, 4, GrB_ALL, 4, NULL)) ;
    printgauss (C, "\n=============== C = C * ciso (full JIT):\n") ;
    OK_JIT

    gauss result ;
    OK (GrB_Matrix_extractElement_UDT (&result, C, 3, 3)) ;

    // free everything and finalize GraphBLAS
    GrB_Matrix_free (&A) ;
    GrB_Matrix_free (&B) ;
    GrB_Matrix_free (&D) ;
    GrB_Matrix_free (&C) ;
    GrB_Matrix_free (&R) ;
    GrB_Type_free (&Gauss) ;
    GrB_BinaryOp_free (&AddGauss) ;
    GrB_UnaryOp_free (&RealGauss) ;
    GrB_IndexUnaryOp_free (&IJGauss) ;
    GrB_Monoid_free (&AddMonoid) ;
    GrB_BinaryOp_free (&MultGauss) ;
    GrB_Semiring_free (&GaussSemiring) ;
    OK_JIT
    GrB_finalize ( ) ;

    // return result
    bool ok = (result.real == 65 && result.imag == 1170) ;
    if (ok)
    {
        fprintf (stderr, "gauss_demo: all tests pass\n") ;
    }
    else
    {
        fprintf (stderr, "gauss_demo: test failure\n") ;
    }
    return (ok ? 0 : 1) ;
}