1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
|
\newpage
%===============================================================================
\subsection{GraphBLAS matrices: {\sf GrB\_Matrix}} %============================
%===============================================================================
\label{matrix}
This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse matrix, \verb'GrB_Matrix':
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Matrix_new' & create a matrix & \ref{matrix_new} \\
\verb'GrB_Matrix_wait' & wait for a matrix & \ref{matrix_wait} \\
\verb'GrB_Matrix_dup' & copy a matrix & \ref{matrix_dup} \\
\verb'GrB_Matrix_clear' & clear a matrix of all entries & \ref{matrix_clear} \\
\verb'GrB_Matrix_nrows' & number of rows of a matrix & \ref{matrix_nrows} \\
\verb'GrB_Matrix_ncols' & number of columns of a matrix & \ref{matrix_ncols} \\
\verb'GrB_Matrix_nvals' & number of entries in a matrix & \ref{matrix_nvals} \\
\verb'GrB_Matrix_build' & build a matrix from tuples & \ref{matrix_build} \\
\verb'GxB_Matrix_build_Vector' & build a matrix from tuples & \ref{matrix_build_Vector} \\
\verb'GxB_Matrix_build_Scalar' & build a matrix from tuples & \ref{matrix_build_Scalar} \\
\verb'GxB_Matrix_build_Scalar_Vector' & build a matrix from tuples & \ref{matrix_build_Scalar_Vector} \\
\verb'GrB_Matrix_setElement' & add an entry to a matrix & \ref{matrix_setElement} \\
\verb'GrB_Matrix_extractElement'& get an entry from a matrix & \ref{matrix_extractElement} \\
\verb'GxB_Matrix_isStoredElement'& check if entry present in matrix & \ref{matrix_isStoredElement} \\
\verb'GrB_Matrix_removeElement' & remove an entry from a matrix & \ref{matrix_removeElement} \\
\verb'GrB_Matrix_extractTuples' & get all entries from a matrix & \ref{matrix_extractTuples} \\
\verb'GxB_Matrix_extractTuples_Vector' & get all entries from a matrix & \ref{matrix_extractTuples_Vector} \\
\verb'GrB_Matrix_resize' & resize a matrix & \ref{matrix_resize} \\
\verb'GxB_Matrix_reshape' & reshape a matrix & \ref{matrix_reshape} \\
\verb'GxB_Matrix_reshapeDup' & reshape a matrix & \ref{matrix_reshapedup} \\
\verb'GxB_Matrix_concat' & concatenate matrices & \ref{matrix_concat} \\
\verb'GxB_Matrix_split' & split a matrix into matrices & \ref{matrix_split} \\
\verb'GrB_Matrix_diag' & diagonal matrix from vector & \ref{matrix_diag} \\
\verb'GxB_Matrix_diag' & diagonal matrix from vector & \ref{matrix_diag_GxB} \\
\verb'GxB_Matrix_memoryUsage' & memory used by a matrix & \ref{matrix_memusage} \\
\verb'GxB_Matrix_type' & type of the matrix & \ref{matrix_type} \\
\verb'GrB_Matrix_free' & free a matrix & \ref{matrix_free} \\
\hline
\hline
\verb'GrB_Matrix_serializeSize' & return size of serialized matrix & \ref{matrix_serialize_size} \\
\verb'GrB_Matrix_serialize' & serialize a matrix & \ref{matrix_serialize} \\
\verb'GxB_Matrix_serialize' & serialize a matrix & \ref{matrix_serialize_GxB} \\
\verb'GrB_Matrix_deserialize' & deserialize a matrix & \ref{matrix_deserialize} \\
\verb'GxB_Matrix_deserialize' & deserialize a matrix & \ref{matrix_deserialize_GxB} \\
\hline
\hline
\verb'GrB_get' & get properties of a matrix & \ref{get_set_matrix} \\
\verb'GrB_set' & set properties of a matrix & \ref{get_set_matrix} \\
\hline
\end{tabular}
}
\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function & purpose & Section \\
\hline
\verb'GrB_Matrix_import' & import in various formats & \ref{GrB_matrix_import} \\
\verb'GrB_Matrix_export' & export in various formats & \ref{GrB_matrix_export} \\
\verb'GrB_Matrix_exportSize' & array sizes for export & \ref{export_size} \\
\verb'GrB_Matrix_exportHint' & hint best export format & \ref{export_hint} \\
\hline
\verb'GxB_Matrix_sort' & sort a matrix & \ref{matrix_sort} \\
\hline
\end{tabular}
}
\vspace{0.2in}
Refer to
Section~\ref{serialize_deserialize} for serialization/deserialization methods,
Section~\ref{GrB_import_export} for \verb'GrB' import/export methods,
Section~\ref{sorting_methods} for sorting methods,
and Section~\ref{get_set_matrix} for get/set methods.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_new:} create a matrix}
%-------------------------------------------------------------------------------
\label{matrix_new}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_new // create a new matrix with no entries
(
GrB_Matrix *A, // handle of matrix to create
GrB_Type type, // type of matrix to create
GrB_Index nrows, // matrix dimension is nrows-by-ncols
GrB_Index ncols
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_new' creates a new \verb'nrows'-by-\verb'ncols' sparse matrix
with no entries in it, of the given type. This is analogous to the MATLAB
statement \verb'A = sparse (nrows, ncols)', except that GraphBLAS can create
sparse matrices of any type.
By default, matrices of size \verb'nrows-by-1' are held by column, regardless
of the global setting controlled by \verb'GrB_set (GrB_GLOBAL, ...,' \newline
\verb'GrB_STORAGE_ORIENTATION_HINT)', for any value of \verb'nrows'. Matrices
of size \verb'1-by-ncols' with \verb'ncols' not equal to 1 are held by row,
regardless of this global setting. The global setting only affects matrices
with both \verb'm > 1' and \verb'n > 1'. Empty matrices (\verb'0-by-0') are
also controlled by the global setting.
Once a matrix is created, its format (by-row or by-column) can be arbitrarily
changed with \verb'GrB_set (A, fmt, GrB_STORAGE_ORIENTATION_HINT)'
with \verb'fmt' equal to \verb'GrB_COLMAJOR' or \verb'GrB_ROWMAJOR'.
\begin{alert}
{\bf SPEC:} \verb'nrows' and/or \verb'ncols' may be zero.
as an extension to the specification.
\end{alert}
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_wait:} wait for a matrix}
%-------------------------------------------------------------------------------
\label{matrix_wait}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait // wait for a matrix
(
GrB_Matrix C, // matrix to wait for
int mode // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}
In non-blocking mode, the computations for a \verb'GrB_Matrix' may be delayed.
In this case, the matrix is not yet safe to use by multiple independent user
threads. A user application may force completion of a matrix \verb'C' via
\verb'GrB_Matrix_wait(C,mode)'.
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and afterwards different user threads may
simultaneously call GraphBLAS operations that use the matrix \verb'C' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_dup:} copy a matrix}
%-------------------------------------------------------------------------------
\label{matrix_dup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_dup // make an exact copy of a matrix
(
GrB_Matrix *C, // handle of output matrix to create
const GrB_Matrix A // input matrix to copy
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_dup' makes a deep copy of a sparse matrix.
In GraphBLAS, it is possible, and valid, to write the following:
{\footnotesize
\begin{verbatim}
GrB_Matrix A, C ;
GrB_Matrix_new (&A, GrB_FP64, n) ;
C = A ; // C is a shallow copy of A \end{verbatim}}
Then \verb'C' and \verb'A' can be used interchangeably. However, only a
pointer reference is made, and modifying one of them modifies both, and freeing
one of them leaves the other as a dangling handle that should not be used. If
two different matrices are needed, then this should be used instead:
{\footnotesize
\begin{verbatim}
GrB_Matrix A, C ;
GrB_Matrix_new (&A, GrB_FP64, n) ;
GrB_Matrix_dup (&C, A) ; // like C = A, but making a deep copy \end{verbatim}}
Then \verb'C' and \verb'A' are two different matrices that currently have the
same set of values, but they do not depend on each other. Modifying one has
no effect on the other.
The \verb'GrB_NAME' is copied into the new matrix.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_clear:} clear a matrix of all entries}
%-------------------------------------------------------------------------------
\label{matrix_clear}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_clear // clear a matrix of all entries;
( // type and dimensions remain unchanged
GrB_Matrix A // matrix to clear
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_clear' clears all entries from a matrix. All values
\verb'A(i,j)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the matrix. The pattern of \verb'A' is
empty, just as if it were created fresh with \verb'GrB_Matrix_new'. Analogous
with \verb'A (:,:) = 0' in MATLAB. The type and dimensions of \verb'A' do not
change. Any pending updates to the matrix are discarded.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nrows:} return the number of rows of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nrows}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nrows // get the number of rows of a matrix
(
GrB_Index *nrows, // matrix has nrows rows
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_nrows' returns the number of rows of a matrix
(\verb'nrows=size(A,1)' in MATLAB).
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_ncols:} return the number of columns of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_ncols}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_ncols // get the number of columns of a matrix
(
GrB_Index *ncols, // matrix has ncols columns
const GrB_Matrix A // matrix to query
) ;
\end{verbatim}
} \end{mdframed}
\verb'GrB_Matrix_ncols' returns the number of columns of a matrix
(\verb'ncols=size(A,2)' in MATLAB).
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nvals:} return the number of entries in a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nvals}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nvals // get the number of entries in a matrix
(
GrB_Index *nvals, // matrix has nvals entries
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_nvals' returns the number of entries in a matrix. Roughly
analogous to \verb'nvals = nnz(A)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_build:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples
(
GrB_Matrix C, // matrix to build
const GrB_Index *I, // array of row indices of tuples
const GrB_Index *J, // array of column indices of tuples
const <type> *X, // array of values of tuples
GrB_Index nvals, // number of tuples
const GrB_BinaryOp dup // binary function to assemble duplicates
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_build' constructs a sparse matrix \verb'C' from a set of
tuples, \verb'I', \verb'J', and \verb'X', each of length \verb'nvals'. The
matrix \verb'C' must have already been initialized with \verb'GrB_Matrix_new',
and it must have no entries in it before calling \verb'GrB_Matrix_build'. Thus
the dimensions and type of \verb'C' are not changed by this function, but are
inherited from the prior call to \verb'GrB_Matrix_new' or
\verb'GrB_matrix_dup'.
An error is returned (\verb'GrB_INDEX_OUT_OF_BOUNDS') if any row index in
\verb'I' is greater than or equal to the number of rows of \verb'C', or if any
column index in \verb'J' is greater than or equal to the number of columns of
\verb'C'
Any duplicate entries with identical indices are assembled using the binary
\verb'dup' operator provided on input. All three types (\verb'x', \verb'y',
\verb'z' for \verb'z=dup(x,y)') must be identical. The types of \verb'dup',
\verb'C' and \verb'X' must all be compatible. See Section~\ref{typecasting}
regarding typecasting and compatibility. The values in \verb'X' are
typecasted, if needed, into the type of \verb'dup'. Duplicates are then
assembled into a matrix \verb'T' of the same type as \verb'dup', using
\verb'T(i,j) = dup (T (i,j), X (k))'. After \verb'T' is constructed, it is
typecasted into the result \verb'C'. That is, typecasting does not occur at
the same time as the assembly of duplicates.
If \verb'dup' is \verb'NULL', any duplicates result in an error.
If \verb'dup' is the special binary operator \verb'GxB_IGNORE_DUP', then
any duplicates are ignored. If duplicates appear, the last one in the
list of tuples is taken and the prior ones ignored. This is not an error.
\begin{alert}
{\bf SPEC:} As an extension to the specification, results are defined even if
\verb'dup' is non-associative and/or non-commutative.
\end{alert}
The GraphBLAS API requires \verb'dup' to be associative so
that entries can be assembled in any order, and states that the result is
undefined if \verb'dup' is not associative. However, SuiteSparse:GraphBLAS
guarantees a well-defined order of assembly. Entries in the tuples
\verb'[I,J,X]' are first sorted in increasing order of row and column index,
with ties broken by the position of the tuple in the \verb'[I,J,X]' list. If
duplicates appear, they are assembled in the order they appear in the
\verb'[I,J,X]' input. That is, if the same indices \verb'i' and \verb'j'
appear in positions \verb'k1', \verb'k2', \verb'k3', and \verb'k4' in
\verb'[I,J,X]', where \verb'k1 < k2 < k3 < k4', then the following operations
will occur in order:
{\footnotesize
\begin{verbatim}
T (i,j) = X (k1) ;
T (i,j) = dup (T (i,j), X (k2)) ;
T (i,j) = dup (T (i,j), X (k3)) ;
T (i,j) = dup (T (i,j), X (k4)) ; \end{verbatim}}
This is a well-defined order but the user should not depend upon it when using
other GraphBLAS implementations since the GraphBLAS API does not
require this ordering.
However, SuiteSparse:GraphBLAS guarantees this ordering, even when it compute
the result in parallel. With this well-defined order, several operators become
very useful. In particular, the \verb'SECOND' operator results in the last
tuple overwriting the earlier ones. The \verb'FIRST' operator means the value
of the first tuple is used and the others are discarded.
The acronym \verb'dup' is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the \verb'_dup'
suffix in the name of the function \verb'GrB_Matrix_dup'. The latter function
does not apply any operator at all, nor any typecasting, but simply makes a
pure deep copy of a matrix.
The parameter \verb'X' is a pointer to any C equivalent built-in type, or a
\verb'void *' pointer. The \verb'GrB_Matrix_build' function uses the
\verb'_Generic' feature of C11 to detect the type of pointer passed as the
parameter \verb'X'. If \verb'X' is a pointer to a built-in type, then the
function can do the right typecasting. If \verb'X' is a \verb'void *' pointer,
then it can only assume \verb'X' to be a pointer to a user-defined type that is
the same user-defined type of \verb'C' and \verb'dup'. This function has no
way of checking this condition that the \verb'void * X' pointer points to an
array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.
The \verb'GrB_Matrix_build' method is analogous to \verb'C = sparse (I,J,X)' in
MATLAB, with several important extensions that go beyond that which MATLAB can
do. In particular, the MATLAB \verb'sparse' function only provides one option
for assembling duplicates (summation), and it can only build double, double
complex, and logical sparse matrices.
%
The \verb'dup' operator cannot be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_build\_Vector:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build // build a matrix from (I,J,X) tuples
(
GrB_Matrix C, // matrix to build
const GrB_Vector I_vector, // row indices
const GrB_Vector J_vector, // col indices
const GrB_Vector X_vector, // values
const GrB_BinaryOp dup, // binary function to assemble duplicates
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_build_Vector' is identical to \verb'GrB_Matrix_build', except
that the inputs \verb'I', \verb'J', and \verb'X' are \verb'GrB_Vector' objects,
each with \verb'nvals' entries. The interpretation of \verb'I_vector',
\verb'J_vector', and \verb'X_vector' are controlled by descriptor settings
\verb'GxB_ROWINDEX_LIST', \verb'GxB_COLINDEX_LIST', and \verb'GxB_VALUE_LIST',
respectively. The method can use either the indices or values of each of the
input vectors; the default is to use the values. See Section~\ref{ijxvector} for
details.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_build\_Scalar:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build_Scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build // build a matrix from (I,J,scalar) tuples
(
GrB_Matrix C, // matrix to build
const GrB_Index *I, // array of row indices of tuples
const GrB_Index *J, // array of column indices of tuples
GrB_Scalar scalar, // value for all tuples
GrB_Index nvals // number of tuples
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_build_Scalar' constructs a sparse matrix \verb'C' from a set
of tuples defined the index arrays \verb'I' and \verb'J' of length
\verb'nvals', and a scalar. The scalar is the value of all of the tuples.
Unlike \verb'GrB_Matrix_build', there is no \verb'dup' operator to handle
duplicate entries. Instead, any duplicates are silently ignored (if the number
of duplicates is desired, simply compare the input \verb'nvals' with the value
returned by \verb'GrB_Vector_nvals' after the matrix is constructed). All
entries in the sparsity pattern of \verb'C' are identical, and equal to the
input scalar value.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_build\_Scalar\_Vector:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build_Scalar_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build // build a matrix from (I,J,scalar) tuples
(
GrB_Matrix C, // matrix to build
const GrB_Vector I_vector, // row indices
const GrB_Vector J_vector, // col indices
GrB_Scalar scalar, // value for all tuples
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_build_Scalar_Vector' is identical to
\verb'GxB_Matrix_build_Scalar', except that the inputs \verb'I', \verb'J', and
\verb'X' are \verb'GrB_Vector' objects, each with \verb'nvals' entries. The
interpretation of \verb'I_vector' and \verb'J_vector' are controlled by
descriptor settings \verb'GxB_ROWINDEX_LIST' and \verb'GxB_VALUE_LIST',
respectively. The method can use either the indices or values of the
\verb'I_input' and \verb'J_vector' vectors; the default is to use the values.
See Section~\ref{ijxvector} for details.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_setElement:} add an entry to a matrix}
%-------------------------------------------------------------------------------
\label{matrix_setElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_setElement // C (i,j) = x
(
GrB_Matrix C, // matrix to modify
<type> x, // scalar to assign to C(i,j)
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_setElement' sets a single entry in a matrix, \verb'C(i,j)=x'.
If the entry is already present in the pattern of \verb'C', it is overwritten
with the new value. If the entry is not present, it is added to \verb'C'. In
either case, no entry is ever deleted by this function. Passing in a value of
\verb'x=0' simply creates an explicit entry at position \verb'(i,j)' whose
value is zero, even if the implicit value is assumed to be zero.
An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if the column index
\verb'j' is greater than or equal to the number of columns of \verb'C'. Note
that this error code differs from the same kind of condition in
\verb'GrB_Matrix_build', which returns \verb'GrB_INDEX_OUT_OF_BOUNDS'. This is
because \verb'GrB_INVALID_INDEX' is an API error, and is caught immediately
even in non-blocking mode, whereas \verb'GrB_INDEX_OUT_OF_BOUNDS' is an
execution error whose detection may wait until the computation completes
sometime later.
The scalar \verb'x' is typecasted into the type of \verb'C'. Any value can be
passed to this function and its type will be detected, via the \verb'_Generic'
feature of C11. For a user-defined type, \verb'x' is a \verb'void *'
pointer that points to a memory space holding a single entry of this
user-defined type. This user-defined type must exactly match the user-defined
type of \verb'C' since no typecasting is done between user-defined types.
%
If \verb'x' is a \verb'GrB_Scalar' and contains no entry, then the
entry \verb'C(i,j)' is removed (if it exists). The action taken is
identical to \verb'GrB_Matrix_removeElement(C,i,j)' in this case.
{\bf Performance considerations:} % BLOCKING: setElement, *assign
SuiteSparse:GraphBLAS exploits the non-blocking mode to greatly improve the
performance of this method. Refer to the example shown in
Section~\ref{overview}. If the entry exists in the pattern already, it is
updated right away and the work is not left pending. Otherwise, it is placed
in a list of pending updates, and the later on the updates are done all at
once, using the same algorithm used for \verb'GrB_Matrix_build'. In other
words, \verb'setElement' in SuiteSparse:GraphBLAS builds its own internal list
of tuples \verb'[I,J,X]', and then calls \verb'GrB_Matrix_build' whenever the
matrix is needed in another computation, or whenever \verb'GrB_Matrix_wait' is
called.
As a result, if calls to \verb'setElement' are mixed with calls to most other
methods and operations (even \verb'extractElement') then the pending updates
are assembled right away, which will be slow. Performance will be good if many
\verb'setElement' updates are left pending, and performance will be poor if the
updates are assembled frequently.
A few methods and operations can be intermixed with \verb'setElement', in
particular, some forms of the \verb'GrB_assign' and \verb'GxB_subassign'
operations are compatible with the pending updates from \verb'setElement'.
Section~\ref{compare_assign} gives more details on which \verb'GxB_subassign'
and \verb'GrB_assign' operations can be interleaved with calls to
\verb'setElement' without forcing updates to be assembled. Other methods that
do not access the existing entries may also be done without forcing the updates
to be assembled, namely \verb'GrB_Matrix_clear' (which erases all pending
updates), \verb'GrB_Matrix_free', \verb'GrB_Matrix_ncols',
\verb'GrB_Matrix_nrows', \verb'GrB_get', and of course
\verb'GrB_Matrix_setElement' itself. All other methods and operations cause
the updates to be assembled. Future versions of SuiteSparse:GraphBLAS may
extend this list.
See Section~\ref{random} for an example of how to use
\verb'GrB_Matrix_setElement'.
If an error occurs, \verb'GrB_error(&err,C)' returns details about the error.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractElement:} get an entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractElement // x = A(i,j)
(
<type> *x, // extracted scalar (non-opaque C scalar)
const GrB_Matrix A, // matrix to extract a scalar from
GrB_Index i, // row index
GrB_Index j // column index
) ;
GrB_Info GrB_Matrix_extractElement // x = A(i,j)
(
GrB_Scalar x, // extracted GrB_Scalar
const GrB_Matrix A, // matrix to extract a scalar from
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_extractElement' extracts a single entry from a matrix
\verb'x=A(i,j)'.
An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if column index
\verb'j' is greater than or equal to the number of columns of \verb'C'.
If the entry is present, \verb'x=A(i,j)' is performed and the scalar \verb'x'
is returned with this value. The method returns \verb'GrB_SUCCESS'.
If no entry is present at \verb'A(i,j)', and \verb'x' is a non-opaque C scalar,
then \verb'x' is not modified, and the return value of
\verb'GrB_Matrix_extractElement' is \verb'GrB_NO_VALUE'. If \verb'x' is a
\verb'GrB_Scalar', then \verb'x' is returned as an empty scalar with no entry,
and \verb'GrB_SUCCESS' is returned.
The function knows the type of the pointer \verb'x', so it can do typecasting
as needed, from the type of \verb'A' into the type of \verb'x'. User-defined
types cannot be typecasted, so if \verb'A' has a user-defined type then
\verb'x' must be a \verb'void *' pointer that points to a memory space the same
size as a single scalar of the type of \verb'A'.
Currently, this method causes all pending updates from
\verb'GrB_setElement', \verb'GrB_assign', or \verb'GxB_subassign' to be
assembled, so its use can have performance implications. Calls to this
function should not be arbitrarily intermixed with calls to these other two
functions. Everything will work correctly and results will be predictable, it
will just be slow.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_isStoredElement:} check if entry present in matrix}
%-------------------------------------------------------------------------------
\label{matrix_isStoredElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_isStoredElement
(
const GrB_Matrix A, // check for A(i,j)
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_isStoredElement' check if the single entry \verb'A(i,j)' is
present in the matrix \verb'A'. It returns \verb'GrB_SUCCESS' if the entry is
present, or \verb'GrB_NO_VALUE' otherwise. The value of \verb'A(i,j)' is not
returned. It is otherwise identical to \verb'GrB_Matrix_extractElement'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_removeElement:} remove an entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_removeElement}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_removeElement
(
GrB_Matrix C, // matrix to remove an entry from
GrB_Index i, // row index
GrB_Index j // column index
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_removeElement' removes a single entry \verb'A(i,j)' from a
matrix. If no entry is present at \verb'A(i,j)', then the matrix is not
modified. If an error occurs, \verb'GrB_error(&err,A)' returns details about
the error.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractTuples:} get all entries from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractTuples}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)
(
GrB_Index *I, // array for returning row indices of tuples
GrB_Index *J, // array for returning col indices of tuples
<type> *X, // array for returning values of tuples
GrB_Index *nvals, // I,J,X size on input; # tuples on output
const GrB_Matrix A // matrix to extract tuples from
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_extractTuples' extracts all the entries from the matrix
\verb'A', returning them as a list of tuples, analogous to
\verb'[I,J,X]=find(A)' in MATLAB. Entries in the tuples \verb'[I,J,X]' are
unique. No pair of row and column indices \verb'(i,j)' appears more than once.
The GraphBLAS API states the tuples can be returned in any order. If
\verb'GrB_wait' is called first, then SuiteSparse:GraphBLAS chooses to
always return them in sorted order, depending on whether the matrix is stored
by row or by column. Otherwise, the indices can be returned in any order.
The number of tuples in the matrix \verb'A' is given by
\verb'GrB_Matrix_nvals(&anvals,A)'. If \verb'anvals' is larger than the size
of the arrays (\verb'nvals' in the parameter list), an error
\verb'GrB_INSUFFICIENT_SIZE' is returned, and no tuples are extracted. If
\verb'nvals' is larger than \verb'anvals', then only the first \verb'anvals'
entries in the arrays \verb'I' \verb'J', and \verb'X' are modified, containing
all the tuples of \verb'A', and the rest of \verb'I' \verb'J', and \verb'X' are
left unchanged. On output, \verb'nvals' contains the number of tuples
extracted.
\begin{alert}
{\bf SPEC:} As an extension to the specification, the arrays \verb'I',
\verb'J', and/or \verb'X' may be passed in as \verb'NULL' pointers.
\verb'GrB_Matrix_extractTuples' does not return a component specified as
\verb'NULL'. This is not an error condition.
\end{alert}
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_extractTuples\_Vector:} get all entries from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractTuples_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractTuples // [I,J,X] = find (A)
(
GrB_Vector I_vector, // row indices
GrB_Vector J_vector, // col indices
GrB_Vector X_vector, // values
const GrB_Matrix A, // matrix to extract tuples from
const GrB_Descriptor desc // currently unused; for future expansion
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_extractTuples_Vector' is identical to
\verb'GrB_Matrix_extractTuples' except that its three outputs are
\verb'GrB_Vector' objects. The vectors \verb'I_vector', \verb'J_vector', and
\verb'X_vector' objects must exist on input. On output, any prior content is
erased and their type, dimensions, and values are revised to contain dense
vectors of length \verb'nvals'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_resize:} resize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_resize}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_resize // change the size of a matrix
(
GrB_Matrix A, // matrix to modify
const GrB_Index nrows_new, // new number of rows in matrix
const GrB_Index ncols_new // new number of columns in matrix
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_resize' changes the size of a matrix. If the dimensions
decrease, entries that fall outside the resized matrix are deleted. Unlike
\verb'GxB_Matrix_reshape*' (see Sections \ref{matrix_reshape} and
\ref{matrix_reshapedup}), entries remain in their same position after resizing
the matrix.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_reshape:} reshape a matrix}
%-------------------------------------------------------------------------------
\label{matrix_reshape}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_reshape // reshape a GrB_Matrix in place
(
// input/output:
GrB_Matrix C, // input/output matrix, reshaped in place
// input:
bool by_col, // true if reshape by column, false if by row
GrB_Index nrows_new, // new number of rows of C
GrB_Index ncols_new, // new number of columns of C
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_reshape' changes the size of a matrix \verb'C', taking entries
from the input matrix either column-wise or row-wise. If matrix \verb'C' on
input is \verb'nrows'-by-\verb'ncols', and the requested dimensions of
\verb'C' on output are \verb'nrows_new'-by-\verb'nrows_cols', then
the condition \verb'nrows*ncols == nrows_new*nrows_cols' must hold.
The matrix \verb'C' is modified in-place, as both an input and output for
this method. To create a new matrix, use \verb'GxB_Matrix_reshapeDup'
instead (Section \ref{matrix_reshapedup}).
For example, if \verb'C' is 3-by-4 on input, and is reshaped column-wise to
have dimensions 2-by-6:
\begin{verbatim}
C on input C on output (by_col true)
00 01 02 03 00 20 11 02 22 13
10 11 12 13 10 01 21 12 03 23
20 21 22 23
\end{verbatim}
If the same \verb'C' on input is reshaped row-wise to dimensions 2-by-6:
\begin{verbatim}
C on input C on output (by_col false)
00 01 02 03 00 01 02 03 10 11
10 11 12 13 12 13 20 21 22 23
20 21 22 23
\end{verbatim}
NOTE: because an intermediate linear index must be computed for each entry,
\verb'GxB_Matrix_reshape' cannot be used on matrices for which
\verb'nrows*ncols' exceeds $2^{60}$.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_reshapeDup:} reshape a matrix}
%-------------------------------------------------------------------------------
\label{matrix_reshapedup}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_reshapeDup // reshape a GrB_Matrix into another GrB_Matrix
(
// output:
GrB_Matrix *C, // newly created output matrix, not in place
// input:
GrB_Matrix A, // input matrix, not modified
bool by_col, // true if reshape by column, false if by row
GrB_Index nrows_new, // number of rows of C
GrB_Index ncols_new, // number of columns of C
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_reshapeDup' is identical to \verb'GxB_Matrix_reshape' (see
Section \ref{matrix_reshape}), except that creates a new output matrix
\verb'C' that is reshaped from the input matrix \verb'A'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_concat:} concatenate matrices }
%-------------------------------------------------------------------------------
\label{matrix_concat}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_concat // concatenate a 2D array of matrices
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix *Tiles, // 2D row-major array of size m-by-n
const GrB_Index m,
const GrB_Index n,
const GrB_Descriptor desc // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_concat' concatenates an array of matrices (\verb'Tiles') into
a single \verb'GrB_Matrix' \verb'C'.
\verb'Tiles' is an \verb'm'-by-\verb'n' dense array of matrices held in
row-major format, where \verb'Tiles [i*n+j]' is the $(i,j)$th tile, and where
\verb'm' $> 0$ and \verb'n' $> 0$ must hold. Let $A_{i,j}$ denote the
$(i,j)$th tile. The matrix \verb'C' is constructed by concatenating these
tiles together, as:
\[
C =
\left[
\begin{array}{ccccc}
A_{0,0} & A_{0,1} & A_{0,2} & \cdots & A_{0,n-1} \\
A_{1,0} & A_{1,1} & A_{1,2} & \cdots & A_{1,n-1} \\
\cdots & \\
A_{m-1,0} & A_{m-1,1} & A_{m-1,2} & \cdots & A_{m-1,n-1}
\end{array}
\right]
\]
On input, the matrix \verb'C' must already exist. Any existing entries in
\verb'C' are discarded. \verb'C' must have dimensions \verb'nrows' by
\verb'ncols' where \verb'nrows' is the sum of the number of rows in the
matrices $A_{i,0}$ for all $i$, and \verb'ncols' is the sum of the number of
columns in the matrices $A_{0,j}$ for all $j$. All matrices in any given tile
row $i$ must have the same number of rows (that is, and all matrices in any
given tile column $j$ must have the same number of columns).
The type of \verb'C' is unchanged, and all matrices $A_{i,j}$ are typecasted
into the type of \verb'C'. Any settings made to \verb'C' by
\verb'GrB_set' (format by row or by column, bitmap switch, hyper
switch, and sparsity control) are unchanged.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_split:} split a matrix }
%-------------------------------------------------------------------------------
\label{matrix_split}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_split // split a matrix into 2D array of matrices
(
GrB_Matrix *Tiles, // 2D row-major array of size m-by-n
const GrB_Index m,
const GrB_Index n,
const GrB_Index *Tile_nrows, // array of size m
const GrB_Index *Tile_ncols, // array of size n
const GrB_Matrix A, // input matrix to split
const GrB_Descriptor desc // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_split' does the opposite of \verb'GxB_Matrix_concat'. It
splits a single input matrix \verb'A' into a 2D array of tiles. On input, the
\verb'Tiles' array must be a non-\verb'NULL' pointer to a previously allocated
array of size at least \verb'm*n' where both \verb'm' and \verb'n' must be
greater than zero. The \verb'Tiles_nrows' array has size \verb'm', and
\verb'Tiles_ncols' has size \verb'n'. The $(i,j)$th tile has dimension
\verb'Tiles_nrows[i]'-by-\verb'Tiles_ncols[j]'. The sum of
\verb'Tiles_nrows [0:m-1]' must equal the number of rows of \verb'A', and the
sum of \verb'Tiles_ncols [0:n-1]' must equal the number of columns of \verb'A'.
The type of each tile is the same as the type of \verb'A'; no typecasting is
done.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_diag:} construct a diagonal matrix}
%-------------------------------------------------------------------------------
\label{matrix_diag}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_diag // construct a diagonal matrix from a vector
(
GrB_Matrix *C, // output matrix
const GrB_Vector v, // input vector
int64_t k
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_diag' constructs a matrix from a vector. Let $n$ be the
length of the \verb'v' vector, from \verb'GrB_Vector_size (&n, v)'. If
\verb'k' = 0, then \verb'C' is an $n$-by-$n$ diagonal matrix with the entries
from \verb'v' along the main diagonal of \verb'C', with \verb'C(i,i)=v(i)'. If
\verb'k' is nonzero, \verb'C' is square with dimension $n+|k|$. If \verb'k' is
positive, it denotes diagonals above the main diagonal, with
\verb'C(i,i+k)=v(i)'.
If \verb'k' is negative, it denotes diagonals below the main diagonal of
\verb'C', with \verb'C(i-k,i)=v(i)'. This behavior is identical to the MATLAB
statement \verb'C=diag(v,k)', where \verb'v' is a vector.
The output matrix \verb'C' is a newly-constructed square matrix with the
same type as the input vector \verb'v'. No typecasting is performed.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_diag:} build a diagonal matrix}
%-------------------------------------------------------------------------------
\label{matrix_diag_GxB}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_diag // build a diagonal matrix from a vector
(
GrB_Matrix C, // output matrix
const GrB_Vector v, // input vector
int64_t k,
const GrB_Descriptor desc // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}
Identical to \verb'GrB_Matrix_diag', except for the extra parameter
(a \verb'descriptor' to provide control over the number of threads used),
and this method is not a constructor.
The matrix \verb'C' must already exist on input, of the correct size. It must
be square of dimension $n+|k|$ where the vector \verb'v' has length $n$. Any
existing entries in \verb'C' are discarded. The type of \verb'C' is preserved,
so that if the type of \verb'C' and \verb'v' differ, the entries are typecasted
into the type of \verb'C'. Any settings made to \verb'C' by
\verb'GrB_set' (format by row or by column, bitmap switch, hyper
switch, and sparsity control) are unchanged.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_memoryUsage:} memory used by a matrix}
%-------------------------------------------------------------------------------
\label{matrix_memusage}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_memoryUsage // return # of bytes used for a matrix
(
size_t *size, // # of bytes used by the matrix A
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
Returns the memory space required for a matrix, in bytes.
By default, any read-only components are not included in the total memory.
This can be changed with via \verb'GrB_set'; see Section~\ref{get_set_global}.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_type:} type of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_type}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_type // get the type of a matrix
(
GrB_Type *type, // returns the type of the matrix
const GrB_Matrix A // matrix to query
) ;
\end{verbatim} } \end{mdframed}
Returns the type of a matrix. The \verb'type' parameter is not allocated.
Calling \verb'GxB_Matrix_type' is identical to making a shallow pointer copy
of the type used to create a matrix. In particular, suppose a matrix is
created, and a copy of its type is saved at the same time:
{\footnotesize
\begin{verbatim}
GrB_Matrix_new (&A, atype, m, n) ;
GrB_Type save_type = atype ;
\end{verbatim}}
Sometime later, while the matrix \verb'A' and its type \verb'atype' have not
been freed, the following two code fragments are identical:
{\footnotesize
\begin{verbatim}
// using GxB_Matrix_type:
GrB_Type atype2 ;
GxB_Matrix_type (&atype2, A) ;
assert (atype2 == save_type) ;
// without GxB_Matrix_type:
GrB_Type atype2 = save_type ;
\end{verbatim}}
As a result, freeing \verb'atype2' would be the same as freeing the original
\verb'atype'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_free:} free a matrix}
%-------------------------------------------------------------------------------
\label{matrix_free}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free // free a matrix
(
GrB_Matrix *A // handle of matrix to free
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_free' frees a matrix. Either usage:
{\small
\begin{verbatim}
GrB_Matrix_free (&A) ;
GrB_free (&A) ; \end{verbatim}}
\noindent
frees the matrix \verb'A' and sets \verb'A' to \verb'NULL'. It safely does
nothing if passed a \verb'NULL' handle, or if \verb'A == NULL' on input. Any
pending updates to the matrix are abandoned.
|