File: GrB_objects_Matrix.tex

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (1041 lines) | stat: -rw-r--r-- 47,562 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041


\newpage
%===============================================================================
\subsection{GraphBLAS matrices: {\sf GrB\_Matrix}} %============================
%===============================================================================
\label{matrix}

This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse matrix, \verb'GrB_Matrix':

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Matrix_new'           & create a matrix                       & \ref{matrix_new} \\
\verb'GrB_Matrix_wait'          & wait for a matrix                     & \ref{matrix_wait} \\
\verb'GrB_Matrix_dup'           & copy a matrix                         & \ref{matrix_dup} \\
\verb'GrB_Matrix_clear'         & clear a matrix of all entries         & \ref{matrix_clear} \\
\verb'GrB_Matrix_nrows'         & number of rows of a matrix            & \ref{matrix_nrows} \\
\verb'GrB_Matrix_ncols'         & number of columns of a matrix         & \ref{matrix_ncols} \\
\verb'GrB_Matrix_nvals'         & number of entries in a matrix         & \ref{matrix_nvals} \\
\verb'GrB_Matrix_build'         & build a matrix from tuples            & \ref{matrix_build} \\
\verb'GxB_Matrix_build_Vector'         & build a matrix from tuples     & \ref{matrix_build_Vector} \\
\verb'GxB_Matrix_build_Scalar'  & build a matrix from tuples            & \ref{matrix_build_Scalar} \\
\verb'GxB_Matrix_build_Scalar_Vector'  & build a matrix from tuples     & \ref{matrix_build_Scalar_Vector} \\
\verb'GrB_Matrix_setElement'    & add an entry to a matrix              & \ref{matrix_setElement} \\
\verb'GrB_Matrix_extractElement'& get an entry from a matrix            & \ref{matrix_extractElement} \\
\verb'GxB_Matrix_isStoredElement'& check if entry present in matrix     & \ref{matrix_isStoredElement} \\
\verb'GrB_Matrix_removeElement' & remove an entry from a matrix         & \ref{matrix_removeElement} \\
\verb'GrB_Matrix_extractTuples' & get all entries from a matrix         & \ref{matrix_extractTuples} \\
\verb'GxB_Matrix_extractTuples_Vector' & get all entries from a matrix  & \ref{matrix_extractTuples_Vector} \\
\verb'GrB_Matrix_resize'        & resize a matrix                       & \ref{matrix_resize} \\
\verb'GxB_Matrix_reshape'       & reshape a matrix                      & \ref{matrix_reshape} \\
\verb'GxB_Matrix_reshapeDup'    & reshape a matrix                      & \ref{matrix_reshapedup} \\
\verb'GxB_Matrix_concat'        & concatenate matrices                  & \ref{matrix_concat} \\
\verb'GxB_Matrix_split'         & split a matrix into matrices          & \ref{matrix_split} \\
\verb'GrB_Matrix_diag'          & diagonal matrix from vector           & \ref{matrix_diag} \\
\verb'GxB_Matrix_diag'          & diagonal matrix from vector           & \ref{matrix_diag_GxB} \\
\verb'GxB_Matrix_memoryUsage'   & memory used by a matrix               & \ref{matrix_memusage} \\
\verb'GxB_Matrix_type'          & type of the matrix                    & \ref{matrix_type} \\
\verb'GrB_Matrix_free'          & free a matrix                         & \ref{matrix_free} \\
\hline
\hline
\verb'GrB_Matrix_serializeSize' & return size of serialized matrix & \ref{matrix_serialize_size} \\
\verb'GrB_Matrix_serialize'     & serialize a matrix               & \ref{matrix_serialize} \\
\verb'GxB_Matrix_serialize'     & serialize a matrix               & \ref{matrix_serialize_GxB} \\
\verb'GrB_Matrix_deserialize'   & deserialize a matrix             & \ref{matrix_deserialize} \\
\verb'GxB_Matrix_deserialize'   & deserialize a matrix             & \ref{matrix_deserialize_GxB} \\
\hline
\hline
\verb'GrB_get'  & get properties of a matrix       & \ref{get_set_matrix} \\
\verb'GrB_set'  & set properties of a matrix       & \ref{get_set_matrix} \\
\hline
\end{tabular}
}

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Matrix_import'        & import in various formats & \ref{GrB_matrix_import} \\
\verb'GrB_Matrix_export'        & export in various formats & \ref{GrB_matrix_export} \\
\verb'GrB_Matrix_exportSize'    & array sizes for export & \ref{export_size} \\
\verb'GrB_Matrix_exportHint'    & hint best export format & \ref{export_hint} \\
\hline
\verb'GxB_Matrix_sort'          & sort a matrix & \ref{matrix_sort} \\
\hline
\end{tabular}
}

\vspace{0.2in}
Refer to
Section~\ref{serialize_deserialize} for serialization/deserialization methods,
Section~\ref{GrB_import_export} for \verb'GrB' import/export methods,
Section~\ref{sorting_methods} for sorting methods,
and Section~\ref{get_set_matrix} for get/set methods.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_new:}          create a matrix}
%-------------------------------------------------------------------------------
\label{matrix_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_new     // create a new matrix with no entries
(
    GrB_Matrix *A,          // handle of matrix to create
    GrB_Type type,          // type of matrix to create
    GrB_Index nrows,        // matrix dimension is nrows-by-ncols
    GrB_Index ncols
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_new' creates a new \verb'nrows'-by-\verb'ncols' sparse matrix
with no entries in it, of the given type.  This is analogous to the MATLAB
statement \verb'A = sparse (nrows, ncols)', except that GraphBLAS can create
sparse matrices of any type.

By default, matrices of size \verb'nrows-by-1' are held by column, regardless
of the global setting controlled by \verb'GrB_set (GrB_GLOBAL, ...,' \newline
\verb'GrB_STORAGE_ORIENTATION_HINT)', for any value of \verb'nrows'.  Matrices
of size \verb'1-by-ncols' with \verb'ncols' not equal to 1 are held by row,
regardless of this global setting.  The global setting only affects matrices
with both \verb'm > 1' and \verb'n > 1'.  Empty matrices (\verb'0-by-0') are
also controlled by the global setting.

Once a matrix is created, its format (by-row or by-column) can be arbitrarily
changed with \verb'GrB_set (A, fmt, GrB_STORAGE_ORIENTATION_HINT)'
with \verb'fmt' equal to \verb'GrB_COLMAJOR' or \verb'GrB_ROWMAJOR'.

\begin{alert}
{\bf SPEC:} \verb'nrows' and/or \verb'ncols' may be zero.
as an extension to the specification.
\end{alert}

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_wait:} wait for a matrix}
%-------------------------------------------------------------------------------
\label{matrix_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a matrix
(
    GrB_Matrix C,               // matrix to wait for
    int mode                    // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

In non-blocking mode, the computations for a \verb'GrB_Matrix' may be delayed.
In this case, the matrix is not yet safe to use by multiple independent user
threads.  A user application may force completion of a matrix \verb'C' via
\verb'GrB_Matrix_wait(C,mode)'.
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and afterwards different user threads may
simultaneously call GraphBLAS operations that use the matrix \verb'C' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_dup:}          copy a matrix}
%-------------------------------------------------------------------------------
\label{matrix_dup}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_dup     // make an exact copy of a matrix
(
    GrB_Matrix *C,          // handle of output matrix to create
    const GrB_Matrix A      // input matrix to copy
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_dup' makes a deep copy of a sparse matrix.
In GraphBLAS, it is possible, and valid, to write the following:

    {\footnotesize
    \begin{verbatim}
    GrB_Matrix A, C ;
    GrB_Matrix_new (&A, GrB_FP64, n) ;
    C = A ;                         // C is a shallow copy of A  \end{verbatim}}

Then \verb'C' and \verb'A' can be used interchangeably.  However, only a
pointer reference is made, and modifying one of them modifies both, and freeing
one of them leaves the other as a dangling handle that should not be used.  If
two different matrices are needed, then this should be used instead:

    {\footnotesize
    \begin{verbatim}
    GrB_Matrix A, C ;
    GrB_Matrix_new (&A, GrB_FP64, n) ;
    GrB_Matrix_dup (&C, A) ;        // like C = A, but making a deep copy \end{verbatim}}

Then \verb'C' and \verb'A' are two different matrices that currently have the
same set of values, but they do not depend on each other.  Modifying one has
no effect on the other.
The \verb'GrB_NAME' is copied into the new matrix.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_clear:}        clear a matrix of all entries}
%-------------------------------------------------------------------------------
\label{matrix_clear}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_clear   // clear a matrix of all entries;
(                           // type and dimensions remain unchanged
    GrB_Matrix A            // matrix to clear
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_clear' clears all entries from a matrix.  All values
\verb'A(i,j)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the matrix.  The pattern of \verb'A' is
empty, just as if it were created fresh with \verb'GrB_Matrix_new'.  Analogous
with \verb'A (:,:) = 0' in MATLAB.  The type and dimensions of \verb'A' do not
change.  Any pending updates to the matrix are discarded.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nrows:}        return the number of rows of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nrows}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nrows   // get the number of rows of a matrix
(
    GrB_Index *nrows,       // matrix has nrows rows
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_nrows' returns the number of rows of a matrix
(\verb'nrows=size(A,1)' in MATLAB).

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_ncols:}        return the number of columns of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_ncols}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_ncols   // get the number of columns of a matrix
(
    GrB_Index *ncols,       // matrix has ncols columns
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Matrix_ncols' returns the number of columns of a matrix
(\verb'ncols=size(A,2)' in MATLAB).

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_nvals:}        return the number of entries in a matrix}
%-------------------------------------------------------------------------------
\label{matrix_nvals}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_nvals   // get the number of entries in a matrix
(
    GrB_Index *nvals,       // matrix has nvals entries
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_nvals' returns the number of entries in a matrix.  Roughly
analogous to \verb'nvals = nnz(A)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_build:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build           // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    const <type> *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_build' constructs a sparse matrix \verb'C' from a set of
tuples, \verb'I', \verb'J', and \verb'X', each of length \verb'nvals'.  The
matrix \verb'C' must have already been initialized with \verb'GrB_Matrix_new',
and it must have no entries in it before calling \verb'GrB_Matrix_build'.  Thus
the dimensions and type of \verb'C' are not changed by this function, but are
inherited from the prior call to \verb'GrB_Matrix_new' or
\verb'GrB_matrix_dup'.

An error is returned (\verb'GrB_INDEX_OUT_OF_BOUNDS') if any row index in
\verb'I' is greater than or equal to the number of rows of \verb'C', or if any
column index in \verb'J' is greater than or equal to the number of columns of
\verb'C'

Any duplicate entries with identical indices are assembled using the binary
\verb'dup' operator provided on input.  All three types (\verb'x', \verb'y',
\verb'z' for \verb'z=dup(x,y)') must be identical.  The types of \verb'dup',
\verb'C' and \verb'X' must all be compatible.  See Section~\ref{typecasting}
regarding typecasting and compatibility.  The values in \verb'X' are
typecasted, if needed, into the type of \verb'dup'.  Duplicates are then
assembled into a matrix \verb'T' of the same type as \verb'dup', using
\verb'T(i,j) = dup (T (i,j), X (k))'.  After \verb'T' is constructed, it is
typecasted into the result \verb'C'.  That is, typecasting does not occur at
the same time as the assembly of duplicates.

If \verb'dup' is \verb'NULL', any duplicates result in an error.
If \verb'dup' is the special binary operator \verb'GxB_IGNORE_DUP', then
any duplicates are ignored.  If duplicates appear, the last one in the
list of tuples is taken and the prior ones ignored.  This is not an error.

\begin{alert}
{\bf SPEC:} As an extension to the specification, results are defined even if
\verb'dup' is non-associative and/or non-commutative.
\end{alert}

The GraphBLAS API requires \verb'dup' to be associative so
that entries can be assembled in any order, and states that the result is
undefined if \verb'dup' is not associative.  However, SuiteSparse:GraphBLAS
guarantees a well-defined order of assembly.  Entries in the tuples
\verb'[I,J,X]' are first sorted in increasing order of row and column index,
with ties broken by the position of the tuple in the \verb'[I,J,X]' list.  If
duplicates appear, they are assembled in the order they appear in the
\verb'[I,J,X]' input.  That is, if the same indices \verb'i' and \verb'j'
appear in positions \verb'k1', \verb'k2', \verb'k3', and \verb'k4' in
\verb'[I,J,X]', where \verb'k1 < k2 < k3 < k4', then the following operations
will occur in order:

    {\footnotesize
    \begin{verbatim}
    T (i,j) = X (k1) ;
    T (i,j) = dup (T (i,j), X (k2)) ;
    T (i,j) = dup (T (i,j), X (k3)) ;
    T (i,j) = dup (T (i,j), X (k4)) ; \end{verbatim}}

This is a well-defined order but the user should not depend upon it when using
other GraphBLAS implementations since the GraphBLAS API does not
require this ordering.

However, SuiteSparse:GraphBLAS guarantees this ordering, even when it compute
the result in parallel.  With this well-defined order, several operators become
very useful.  In particular, the \verb'SECOND' operator results in the last
tuple overwriting the earlier ones.  The \verb'FIRST' operator means the value
of the first tuple is used and the others are discarded.

The acronym \verb'dup' is used here for the name of binary function used for
assembling duplicates, but this should not be confused with the \verb'_dup'
suffix in the name of the function \verb'GrB_Matrix_dup'.  The latter function
does not apply any operator at all, nor any typecasting, but simply makes a
pure deep copy of a matrix.

The parameter \verb'X' is a pointer to any C equivalent built-in type, or a
\verb'void *' pointer.  The \verb'GrB_Matrix_build' function uses the
\verb'_Generic' feature of C11 to detect the type of pointer passed as the
parameter \verb'X'.  If \verb'X' is a pointer to a built-in type, then the
function can do the right typecasting.  If \verb'X' is a \verb'void *' pointer,
then it can only assume \verb'X' to be a pointer to a user-defined type that is
the same user-defined type of \verb'C' and \verb'dup'.  This function has no
way of checking this condition that the \verb'void * X' pointer points to an
array of the correct user-defined type, so behavior is undefined if the user
breaks this condition.

The \verb'GrB_Matrix_build' method is analogous to \verb'C = sparse (I,J,X)' in
MATLAB, with several important extensions that go beyond that which MATLAB can
do.  In particular, the MATLAB \verb'sparse' function only provides one option
for assembling duplicates (summation), and it can only build double, double
complex, and logical sparse matrices.
%
The \verb'dup' operator cannot be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_build\_Vector:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build_Vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build           // build a matrix from (I,J,X) tuples
(
    GrB_Matrix C,               // matrix to build
    const GrB_Vector I_vector,  // row indices
    const GrB_Vector J_vector,  // col indices
    const GrB_Vector X_vector,  // values
    const GrB_BinaryOp dup,     // binary function to assemble duplicates
    const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_build_Vector' is identical to \verb'GrB_Matrix_build', except
that the inputs \verb'I', \verb'J', and \verb'X' are \verb'GrB_Vector' objects,
each with \verb'nvals' entries.  The interpretation of \verb'I_vector',
\verb'J_vector', and \verb'X_vector' are controlled by descriptor settings
\verb'GxB_ROWINDEX_LIST', \verb'GxB_COLINDEX_LIST', and \verb'GxB_VALUE_LIST',
respectively.  The method can use either the indices or values of each of the
input vectors; the default is to use the values.  See Section~\ref{ijxvector} for
details.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_build\_Scalar:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build_Scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build           // build a matrix from (I,J,scalar) tuples
(
    GrB_Matrix C,                   // matrix to build
    const GrB_Index *I,             // array of row indices of tuples
    const GrB_Index *J,             // array of column indices of tuples
    GrB_Scalar scalar,              // value for all tuples
    GrB_Index nvals                 // number of tuples
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_build_Scalar' constructs a sparse matrix \verb'C' from a set
of tuples defined the index arrays \verb'I' and \verb'J' of length
\verb'nvals', and a scalar.  The scalar is the value of all of the tuples.
Unlike \verb'GrB_Matrix_build', there is no \verb'dup' operator to handle
duplicate entries.  Instead, any duplicates are silently ignored (if the number
of duplicates is desired, simply compare the input \verb'nvals' with the value
returned by \verb'GrB_Vector_nvals' after the matrix is constructed).  All
entries in the sparsity pattern of \verb'C' are identical, and equal to the
input scalar value.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_build\_Scalar\_Vector:} build a matrix from a set of tuples}
%-------------------------------------------------------------------------------
\label{matrix_build_Scalar_Vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_build       // build a matrix from (I,J,scalar) tuples
(
    GrB_Matrix C,               // matrix to build
    const GrB_Vector I_vector,  // row indices
    const GrB_Vector J_vector,  // col indices
    GrB_Scalar scalar,          // value for all tuples
    const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_build_Scalar_Vector' is identical to
\verb'GxB_Matrix_build_Scalar', except that the inputs \verb'I', \verb'J', and
\verb'X' are \verb'GrB_Vector' objects, each with \verb'nvals' entries.  The
interpretation of \verb'I_vector' and \verb'J_vector' are controlled by
descriptor settings \verb'GxB_ROWINDEX_LIST' and \verb'GxB_VALUE_LIST',
respectively.  The method can use either the indices or values of the
\verb'I_input' and \verb'J_vector' vectors; the default is to use the values.
See Section~\ref{ijxvector} for details.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_setElement:}   add an entry to a matrix}
%-------------------------------------------------------------------------------
\label{matrix_setElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_setElement          // C (i,j) = x
(
    GrB_Matrix C,                       // matrix to modify
    <type> x,                           // scalar to assign to C(i,j)
    GrB_Index i,                        // row index
    GrB_Index j                         // column index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_setElement' sets a single entry in a matrix, \verb'C(i,j)=x'.
If the entry is already present in the pattern of \verb'C', it is overwritten
with the new value.  If the entry is not present, it is added to \verb'C'.  In
either case, no entry is ever deleted by this function.  Passing in a value of
\verb'x=0' simply creates an explicit entry at position \verb'(i,j)' whose
value is zero, even if the implicit value is assumed to be zero.

An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if the column index
\verb'j' is greater than or equal to the number of columns of \verb'C'.  Note
that this error code differs from the same kind of condition in
\verb'GrB_Matrix_build', which returns \verb'GrB_INDEX_OUT_OF_BOUNDS'.  This is
because \verb'GrB_INVALID_INDEX' is an API error, and is caught immediately
even in non-blocking mode, whereas \verb'GrB_INDEX_OUT_OF_BOUNDS' is an
execution error whose detection may wait until the computation completes
sometime later.

The scalar \verb'x' is typecasted into the type of \verb'C'.  Any value can be
passed to this function and its type will be detected, via the \verb'_Generic'
feature of C11.  For a user-defined type, \verb'x' is a \verb'void *'
pointer that points to a memory space holding a single entry of this
user-defined type.  This user-defined type must exactly match the user-defined
type of \verb'C' since no typecasting is done between user-defined types.
%
If \verb'x' is a \verb'GrB_Scalar' and contains no entry, then the
entry \verb'C(i,j)' is removed (if it exists).  The action taken is
identical to \verb'GrB_Matrix_removeElement(C,i,j)' in this case.

{\bf Performance considerations:} % BLOCKING: setElement, *assign
SuiteSparse:GraphBLAS exploits the non-blocking mode to greatly improve the
performance of this method.  Refer to the example shown in
Section~\ref{overview}.  If the entry exists in the pattern already, it is
updated right away and the work is not left pending.  Otherwise, it is placed
in a list of pending updates, and the later on the updates are done all at
once, using the same algorithm used for \verb'GrB_Matrix_build'.  In other
words, \verb'setElement' in SuiteSparse:GraphBLAS builds its own internal list
of tuples \verb'[I,J,X]', and then calls \verb'GrB_Matrix_build' whenever the
matrix is needed in another computation, or whenever \verb'GrB_Matrix_wait' is
called.

As a result, if calls to \verb'setElement' are mixed with calls to most other
methods and operations (even \verb'extractElement') then the pending updates
are assembled right away, which will be slow.  Performance will be good if many
\verb'setElement' updates are left pending, and performance will be poor if the
updates are assembled frequently.

A few methods and operations can be intermixed with \verb'setElement', in
particular, some forms of the \verb'GrB_assign' and \verb'GxB_subassign'
operations are compatible with the pending updates from \verb'setElement'.
Section~\ref{compare_assign} gives more details on which \verb'GxB_subassign'
and \verb'GrB_assign' operations can be interleaved with calls to
\verb'setElement' without forcing updates to be assembled.  Other methods that
do not access the existing entries may also be done without forcing the updates
to be assembled, namely \verb'GrB_Matrix_clear' (which erases all pending
updates), \verb'GrB_Matrix_free', \verb'GrB_Matrix_ncols',
\verb'GrB_Matrix_nrows', \verb'GrB_get', and of course
\verb'GrB_Matrix_setElement' itself.  All other methods and operations cause
the updates to be assembled.  Future versions of SuiteSparse:GraphBLAS may
extend this list.

See Section~\ref{random} for an example of how to use
\verb'GrB_Matrix_setElement'.
If an error occurs, \verb'GrB_error(&err,C)' returns details about the error.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractElement:} get an entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractElement      // x = A(i,j)
(
    <type> *x,                  // extracted scalar (non-opaque C scalar)
    const GrB_Matrix A,         // matrix to extract a scalar from
    GrB_Index i,                // row index
    GrB_Index j                 // column index
) ;
GrB_Info GrB_Matrix_extractElement      // x = A(i,j)
(
    GrB_Scalar x,               // extracted GrB_Scalar
    const GrB_Matrix A,         // matrix to extract a scalar from
    GrB_Index i,                // row index
    GrB_Index j                 // column index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_extractElement' extracts a single entry from a matrix
\verb'x=A(i,j)'.
An error is returned (\verb'GrB_INVALID_INDEX') if the row index \verb'i' is
greater than or equal to the number of rows of \verb'C', or if column index
\verb'j' is greater than or equal to the number of columns of \verb'C'.
If the entry is present, \verb'x=A(i,j)' is performed and the scalar \verb'x'
is returned with this value.  The method returns \verb'GrB_SUCCESS'.
If no entry is present at \verb'A(i,j)', and \verb'x' is a non-opaque C scalar,
then \verb'x' is not modified, and the return value of
\verb'GrB_Matrix_extractElement' is \verb'GrB_NO_VALUE'.  If \verb'x' is a
\verb'GrB_Scalar', then \verb'x' is returned as an empty scalar with no entry,
and \verb'GrB_SUCCESS' is returned.

The function knows the type of the pointer \verb'x', so it can do typecasting
as needed, from the type of \verb'A' into the type of \verb'x'.  User-defined
types cannot be typecasted, so if \verb'A' has a user-defined type then
\verb'x' must be a \verb'void *' pointer that points to a memory space the same
size as a single scalar of the type of \verb'A'.

Currently, this method causes all pending updates from
\verb'GrB_setElement', \verb'GrB_assign', or \verb'GxB_subassign' to be
assembled, so its use can have performance implications.  Calls to this
function should not be arbitrarily intermixed with calls to these other two
functions.  Everything will work correctly and results will be predictable, it
will just be slow.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_isStoredElement:} check if entry present in matrix}
%-------------------------------------------------------------------------------
\label{matrix_isStoredElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_isStoredElement
(
    const GrB_Matrix A,         // check for A(i,j)
    GrB_Index i,                // row index
    GrB_Index j                 // column index
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_isStoredElement' check if the single entry \verb'A(i,j)' is
present in the matrix \verb'A'.  It returns \verb'GrB_SUCCESS' if the entry is
present, or \verb'GrB_NO_VALUE' otherwise.  The value of \verb'A(i,j)' is not
returned. It is otherwise identical to \verb'GrB_Matrix_extractElement'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_removeElement:} remove an entry from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_removeElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_removeElement
(
    GrB_Matrix C,                   // matrix to remove an entry from
    GrB_Index i,                    // row index
    GrB_Index j                     // column index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_removeElement' removes a single entry \verb'A(i,j)' from a
matrix.  If no entry is present at \verb'A(i,j)', then the matrix is not
modified.  If an error occurs, \verb'GrB_error(&err,A)' returns details about
the error.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_extractTuples:} get all entries from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractTuples}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractTuples           // [I,J,X] = find (A)
(
    GrB_Index *I,               // array for returning row indices of tuples
    GrB_Index *J,               // array for returning col indices of tuples
    <type> *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I,J,X size on input; # tuples on output
    const GrB_Matrix A          // matrix to extract tuples from
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_extractTuples' extracts all the entries from the matrix
\verb'A', returning them as a list of tuples, analogous to
\verb'[I,J,X]=find(A)' in MATLAB.  Entries in the tuples \verb'[I,J,X]' are
unique.  No pair of row and column indices \verb'(i,j)' appears more than once.

The GraphBLAS API states the tuples can be returned in any order.  If
\verb'GrB_wait' is called first, then SuiteSparse:GraphBLAS chooses to
always return them in sorted order, depending on whether the matrix is stored
by row or by column.  Otherwise, the indices can be returned in any order.

The number of tuples in the matrix \verb'A' is given by
\verb'GrB_Matrix_nvals(&anvals,A)'.  If \verb'anvals' is larger than the size
of the arrays (\verb'nvals' in the parameter list), an error
\verb'GrB_INSUFFICIENT_SIZE' is returned, and no tuples are extracted.  If
\verb'nvals' is larger than \verb'anvals', then only the first \verb'anvals'
entries in the arrays \verb'I' \verb'J', and \verb'X' are modified, containing
all the tuples of \verb'A', and the rest of \verb'I' \verb'J', and \verb'X' are
left unchanged.  On output, \verb'nvals' contains the number of tuples
extracted.

\begin{alert}
{\bf SPEC:} As an extension to the specification, the arrays \verb'I',
\verb'J', and/or \verb'X' may be passed in as \verb'NULL' pointers.
\verb'GrB_Matrix_extractTuples' does not return a component specified as
\verb'NULL'.  This is not an error condition.
\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_extractTuples\_Vector:} get all entries from a matrix}
%-------------------------------------------------------------------------------
\label{matrix_extractTuples_Vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_extractTuples   // [I,J,X] = find (A)
(
    GrB_Vector I_vector,    // row indices
    GrB_Vector J_vector,    // col indices
    GrB_Vector X_vector,    // values
    const GrB_Matrix A,     // matrix to extract tuples from
    const GrB_Descriptor desc   // currently unused; for future expansion
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_extractTuples_Vector' is identical to
\verb'GrB_Matrix_extractTuples' except that its three outputs are
\verb'GrB_Vector' objects.  The vectors \verb'I_vector', \verb'J_vector', and
\verb'X_vector' objects must exist on input.  On output, any prior content is
erased and their type, dimensions, and values are revised to contain dense
vectors of length \verb'nvals'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_resize:}          resize a matrix}
%-------------------------------------------------------------------------------
\label{matrix_resize}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_resize      // change the size of a matrix
(
    GrB_Matrix A,               // matrix to modify
    const GrB_Index nrows_new,  // new number of rows in matrix
    const GrB_Index ncols_new   // new number of columns in matrix
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_resize' changes the size of a matrix.  If the dimensions
decrease, entries that fall outside the resized matrix are deleted.  Unlike
\verb'GxB_Matrix_reshape*' (see Sections \ref{matrix_reshape} and
\ref{matrix_reshapedup}), entries remain in their same position after resizing
the matrix.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_reshape:} reshape a matrix}
%-------------------------------------------------------------------------------
\label{matrix_reshape}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_reshape     // reshape a GrB_Matrix in place
(
    // input/output:
    GrB_Matrix C,               // input/output matrix, reshaped in place
    // input:
    bool by_col,                // true if reshape by column, false if by row
    GrB_Index nrows_new,        // new number of rows of C
    GrB_Index ncols_new,        // new number of columns of C
    const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_reshape' changes the size of a matrix \verb'C', taking entries
from the input matrix either column-wise or row-wise.  If matrix \verb'C' on
input is \verb'nrows'-by-\verb'ncols', and the requested dimensions of
\verb'C' on output are \verb'nrows_new'-by-\verb'nrows_cols', then
the condition \verb'nrows*ncols == nrows_new*nrows_cols' must hold.
The matrix \verb'C' is modified in-place, as both an input and output for
this method.  To create a new matrix, use \verb'GxB_Matrix_reshapeDup'
instead (Section \ref{matrix_reshapedup}).

For example, if \verb'C' is 3-by-4 on input, and is reshaped column-wise to
have dimensions 2-by-6:

\begin{verbatim}
        C on input      C on output (by_col true)
        00 01 02 03     00 20 11 02 22 13
        10 11 12 13     10 01 21 12 03 23
        20 21 22 23
\end{verbatim}

If the same \verb'C' on input is reshaped row-wise to dimensions 2-by-6:

\begin{verbatim}
        C on input      C on output (by_col false)
        00 01 02 03     00 01 02 03 10 11
        10 11 12 13     12 13 20 21 22 23
        20 21 22 23
\end{verbatim}

NOTE: because an intermediate linear index must be computed for each entry,
\verb'GxB_Matrix_reshape' cannot be used on matrices for which
\verb'nrows*ncols' exceeds $2^{60}$.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_reshapeDup:} reshape a matrix}
%-------------------------------------------------------------------------------
\label{matrix_reshapedup}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_reshapeDup // reshape a GrB_Matrix into another GrB_Matrix
(
    // output:
    GrB_Matrix *C,              // newly created output matrix, not in place
    // input:
    GrB_Matrix A,               // input matrix, not modified
    bool by_col,                // true if reshape by column, false if by row
    GrB_Index nrows_new,        // number of rows of C
    GrB_Index ncols_new,        // number of columns of C
    const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_reshapeDup' is identical to \verb'GxB_Matrix_reshape' (see
Section \ref{matrix_reshape}), except that creates a new output matrix
\verb'C' that is reshaped from the input matrix \verb'A'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_concat:} concatenate matrices   }
%-------------------------------------------------------------------------------
\label{matrix_concat}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_concat          // concatenate a 2D array of matrices
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix *Tiles,        // 2D row-major array of size m-by-n
    const GrB_Index m,
    const GrB_Index n,
    const GrB_Descriptor desc       // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_concat' concatenates an array of matrices (\verb'Tiles') into
a single \verb'GrB_Matrix' \verb'C'.

\verb'Tiles' is an \verb'm'-by-\verb'n' dense array of matrices held in
row-major format, where \verb'Tiles [i*n+j]' is the $(i,j)$th tile, and where
\verb'm' $> 0$ and \verb'n' $> 0$ must hold.  Let $A_{i,j}$ denote the
$(i,j)$th tile.  The matrix \verb'C' is constructed by concatenating these
tiles together, as:

\[
C =
\left[
\begin{array}{ccccc}
          A_{0,0}   & A_{0,1}   & A_{0,2}   & \cdots & A_{0,n-1}   \\
          A_{1,0}   & A_{1,1}   & A_{1,2}   & \cdots & A_{1,n-1}   \\
          \cdots    &                                              \\
          A_{m-1,0} & A_{m-1,1} & A_{m-1,2} & \cdots & A_{m-1,n-1}
\end{array}
\right]
\]

On input, the matrix \verb'C' must already exist.  Any existing entries in
\verb'C' are discarded.  \verb'C' must have dimensions \verb'nrows' by
\verb'ncols' where \verb'nrows' is the sum of the number of rows in the
matrices $A_{i,0}$ for all $i$, and \verb'ncols' is the sum of the number of
columns in the matrices $A_{0,j}$ for all $j$.  All matrices in any given tile
row $i$ must have the same number of rows (that is, and all matrices in any
given tile column $j$ must have the same number of columns).

The type of \verb'C' is unchanged, and all matrices $A_{i,j}$ are typecasted
into the type of \verb'C'.  Any settings made to \verb'C' by
\verb'GrB_set' (format by row or by column, bitmap switch, hyper
switch, and sparsity control) are unchanged.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_split:} split a matrix   }
%-------------------------------------------------------------------------------
\label{matrix_split}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_split           // split a matrix into 2D array of matrices
(
    GrB_Matrix *Tiles,              // 2D row-major array of size m-by-n
    const GrB_Index m,
    const GrB_Index n,
    const GrB_Index *Tile_nrows,    // array of size m
    const GrB_Index *Tile_ncols,    // array of size n
    const GrB_Matrix A,             // input matrix to split
    const GrB_Descriptor desc       // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Matrix_split' does the opposite of \verb'GxB_Matrix_concat'.  It
splits a single input matrix \verb'A' into a 2D array of tiles.  On input, the
\verb'Tiles' array must be a non-\verb'NULL' pointer to a previously allocated
array of size at least \verb'm*n' where both \verb'm' and \verb'n' must be
greater than zero.  The \verb'Tiles_nrows' array has size \verb'm', and
\verb'Tiles_ncols' has size \verb'n'.  The $(i,j)$th tile has dimension
\verb'Tiles_nrows[i]'-by-\verb'Tiles_ncols[j]'.  The sum of
\verb'Tiles_nrows [0:m-1]' must equal the number of rows of \verb'A', and the
sum of \verb'Tiles_ncols [0:n-1]' must equal the number of columns of \verb'A'.
The type of each tile is the same as the type of \verb'A'; no typecasting is
done.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_diag:} construct a diagonal matrix}
%-------------------------------------------------------------------------------
\label{matrix_diag}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Matrix_diag    // construct a diagonal matrix from a vector
(
    GrB_Matrix *C,                  // output matrix
    const GrB_Vector v,             // input vector
    int64_t k
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_diag' constructs a matrix from a vector.  Let $n$ be the
length of the \verb'v' vector, from \verb'GrB_Vector_size (&n, v)'.  If
\verb'k' = 0, then \verb'C' is an $n$-by-$n$ diagonal matrix with the entries
from \verb'v' along the main diagonal of \verb'C', with \verb'C(i,i)=v(i)'.  If
\verb'k' is nonzero, \verb'C' is square with dimension $n+|k|$.  If \verb'k' is
positive, it denotes diagonals above the main diagonal, with
\verb'C(i,i+k)=v(i)'.
If \verb'k' is negative, it denotes diagonals below the main diagonal of
\verb'C', with \verb'C(i-k,i)=v(i)'.  This behavior is identical to the MATLAB
statement \verb'C=diag(v,k)', where \verb'v' is a vector.

The output matrix \verb'C' is a newly-constructed square matrix with the
same type as the input vector \verb'v'.  No typecasting is performed.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_diag:} build a diagonal matrix}
%-------------------------------------------------------------------------------
\label{matrix_diag_GxB}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_diag    // build a diagonal matrix from a vector
(
    GrB_Matrix C,                   // output matrix
    const GrB_Vector v,             // input vector
    int64_t k,
    const GrB_Descriptor desc       // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}

Identical to \verb'GrB_Matrix_diag', except for the extra parameter
(a \verb'descriptor' to provide control over the number of threads used),
and this method is not a constructor.

The matrix \verb'C' must already exist on input, of the correct size.  It must
be square of dimension $n+|k|$ where the vector \verb'v' has length $n$.  Any
existing entries in \verb'C' are discarded.  The type of \verb'C' is preserved,
so that if the type of \verb'C' and \verb'v' differ, the entries are typecasted
into the type of \verb'C'.  Any settings made to \verb'C' by
\verb'GrB_set' (format by row or by column, bitmap switch, hyper
switch, and sparsity control) are unchanged.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_memoryUsage:} memory used by a matrix}
%-------------------------------------------------------------------------------
\label{matrix_memusage}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_memoryUsage  // return # of bytes used for a matrix
(
    size_t *size,           // # of bytes used by the matrix A
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

Returns the memory space required for a matrix, in bytes.
By default, any read-only components are not included in the total memory.
This can be changed with via \verb'GrB_set'; see Section~\ref{get_set_global}.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_type:} type of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_type}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Matrix_type    // get the type of a matrix
(
    GrB_Type *type,         // returns the type of the matrix
    const GrB_Matrix A      // matrix to query
) ;
\end{verbatim} } \end{mdframed}

Returns the type of a matrix.  The \verb'type' parameter is not allocated.
Calling \verb'GxB_Matrix_type' is identical to making a shallow pointer copy
of the type used to create a matrix.  In particular, suppose a matrix is
created, and a copy of its type is saved at the same time:

{\footnotesize
\begin{verbatim}
    GrB_Matrix_new (&A, atype, m, n) ;
    GrB_Type save_type = atype ;
\end{verbatim}}

Sometime later, while the matrix \verb'A' and its type \verb'atype' have not
been freed, the following two code fragments are identical:

{\footnotesize
\begin{verbatim}
    // using GxB_Matrix_type:
    GrB_Type atype2 ;
    GxB_Matrix_type (&atype2, A) ;
    assert (atype2 == save_type) ;

    // without GxB_Matrix_type:
    GrB_Type atype2 = save_type ;
\end{verbatim}}

As a result, freeing \verb'atype2' would be the same as freeing the original
\verb'atype'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_free:} free a matrix}
%-------------------------------------------------------------------------------
\label{matrix_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free           // free a matrix
(
    GrB_Matrix *A           // handle of matrix to free
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_free' frees a matrix.  Either usage:

    {\small
    \begin{verbatim}
    GrB_Matrix_free (&A) ;
    GrB_free (&A) ; \end{verbatim}}

\noindent
frees the matrix \verb'A' and sets \verb'A' to \verb'NULL'.  It safely does
nothing if passed a \verb'NULL' handle, or if \verb'A == NULL' on input.  Any
pending updates to the matrix are abandoned.