File: GrB_objects_Monoid.tex

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (283 lines) | stat: -rw-r--r-- 13,931 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

\newpage
%===============================================================================
\subsection{GraphBLAS monoids: {\sf GrB\_Monoid}} %=============================
%===============================================================================
\label{monoid}

A {\em monoid} is defined on a single domain (that is, a single type), $T$.  It
consists of an associative binary operator $z=f(x,y)$ whose three operands $x$,
$y$, and $z$ are all in this same domain $T$ (that is $T \times T \rightarrow
T$).  The operator must also have an identity element, or ``zero'' in this
domain, such that $f(x,0)=f(0,x)=x$.  Recall that an associative operator
$f(x,y)$ is one for which the condition $f(a, f(b,c)) = f(f (a,b),c)$ always
holds.  That is, operator can be applied in any order and the results remain
the same.  If used in a semiring, the operator must also be commutative.

The 77 predefined monoids are listed in the table below, which
includes nearly all monoids that can be constructed from built-in binary
operators.  A few additional monoids can be defined with \verb'GrB_Monoid_new'
using built-in operators, such as bitwise monoids for signed integers.
Recall that $T$ denotes any built-in type (including boolean, integer, floating
point real, and complex), $R$ denotes any non-complex type (including bool),
$I$ denotes any integer type, and $Z$ denotes any complex type.  Let $S$ denote
the 10 non-boolean real types.  Let $U$ denote all unsigned integer types.

The table lists the GraphBLAS monoid, its type, expression, identity
value, and {\em terminal} value (if any).  For these built-in monoids, the
terminal values are the {\em annihilators} of the function, which is the value
$z$ so that $z=f(z,y)$ regardless of the value of $y$.  For example
$\min(-\infty,y) = -\infty$ for any $y$.  For integer domains, $+\infty$ and
$-\infty$ are the largest and smallest integer in their range.  With unsigned
integers, the smallest value is zero, and thus \verb'GrB_MIN_MONOID_UINT8' has an
identity of 255 and a terminal value of 0.

When computing with a monoid, the computation can terminate early if the
terminal value arises.  No further work is needed since the result will not
change.  This value is called the terminal value instead of the annihilator,
since a user-defined operator can be created with a terminal value that is not
an annihilator.  See Section~\ref{monoid_terminal_new} for an example.

The \verb'GxB_ANY_*' monoid can terminate as soon as it finds any value at all.

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lllll}
\hline
GraphBLAS             & types (domains)            & expression      & identity  & terminal \\
operator              &                            & $z=f(x,y)$      &           & \\
\hline
% numeric SxS -> S
\verb'GrB_PLUS_MONOID_'$S$   & $S \times S \rightarrow S$ & $z = x+y$       & 0         & none \\
\verb'GrB_TIMES_MONOID_'$S$  & $S \times S \rightarrow S$ & $z = xy$        & 1         & 0 or none (see note) \\
\verb'GrB_MIN_MONOID_'$S$    & $S \times S \rightarrow S$ & $z = \min(x,y)$ & $+\infty$ & $-\infty$ \\
\verb'GrB_MAX_MONOID_'$S$    & $S \times S \rightarrow S$ & $z = \max(x,y)$ & $-\infty$ & $+\infty$ \\
\hline
% complex ZxZ -> Z
\verb'GxB_PLUS_'$Z$\verb'_MONOID'   & $Z \times Z \rightarrow Z$ & $z = x+y$       & 0         & none \\
\verb'GxB_TIMES_'$Z$\verb'_MONOID'  & $Z \times Z \rightarrow Z$ & $z = xy$        & 1         & none \\
\hline
% any TxT -> T
\verb'GxB_ANY_'$T$\verb'_MONOID'   & $T \times T \rightarrow T$ & $z = x$ or $y$  & any       & any        \\
\hline
% bool x bool -> bool
\verb'GrB_LOR_MONOID'        & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \vee    y $ & false & true  \\
\verb'GrB_LAND_MONOID'       & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \wedge  y $ & true  & false \\
\verb'GrB_LXOR_MONOID'       & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z = x \veebar y $ & false & none \\
\verb'GrB_LXNOR_MONOID'      & \verb'bool' $\times$ \verb'bool' $\rightarrow$ \verb'bool' & $z =(x ==      y)$ & true  & none \\
\hline
% bitwise: UxU -> U
\verb'GxB_BOR_'$U$\verb'_MONOID'    & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x|y'    & all bits zero & all bits one  \\
\verb'GxB_BAND_'$U$\verb'_MONOID'   & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x&y'    & all bits one  & all bits zero \\
\verb'GxB_BXOR_'$U$\verb'_MONOID'   & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=x^y'    & all bits zero & none \\
\verb'GxB_BXNOR_'$U$\verb'_MONOID'  & $U$ $\times$ $U$ $\rightarrow$ $U$ & \verb'z=~(x^y)' & all bits one  & none \\
\hline
\end{tabular}
}
\vspace{0.2in}

% 40: (min,max,+,*) x (int8,16,32,64, uint8,16,32,64, fp32, fp64)
The C API Specification includes 44 predefined monoids, with the naming
convention \verb'GrB_op_MONOID_type'.  Forty monoids are available for the four
operators \verb'MIN', \verb'MAX', \verb'PLUS', and \verb'TIMES', each with the
10 non-boolean real types.  Four boolean monoids are predefined:
\verb'GrB_LOR_MONOID_BOOL', \verb'GrB_LAND_MONOID_BOOL',
\verb'GrB_LXOR_MONOID_BOOL', and \verb'GrB_LXNOR_MONOID_BOOL'.

% 13 ANY
%  4 complex (PLUS, TIMES)
% 16 bitwise
% 33 total
These all appear in SuiteSparse:GraphBLAS, which adds 33 additional predefined
\verb'GxB*' monoids, with the naming convention \verb'GxB_op_type_MONOID'.  The
\verb'ANY' operator can be used for all 13 types (including complex).  The
\verb'PLUS' and \verb'TIMES' operators are provided for both complex types, for
4 additional complex monoids.  Sixteen monoids are predefined for four bitwise
operators (\verb'BOR', \verb'BAND', \verb'BXOR', and \verb'BNXOR'), each with
four unsigned integer types (\verb'UINT8', \verb'UINT16', \verb'UINT32', and
\verb'UINT64').

{\bf NOTE:}
The \verb'GrB_TIMES_FP*' operators do not have a terminal value of zero, since
they comply with the IEEE 754 standard, and \verb'0*NaN' is not zero, but
\verb'NaN'.  Technically, their terminal value is \verb'NaN', but this value is
rare in practice and thus the terminal condition is not worth checking.

The next sections define the following methods for the \verb'GrB_Monoid'
object:

\vspace{0.2in}
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Monoid_new'       & create a user-defined monoid                  & \ref{monoid_new} \\
\verb'GrB_Monoid_wait'      & wait for a user-defined monoid                & \ref{monoid_wait} \\
\verb'GxB_Monoid_terminal_new'  & create a monoid that has a terminal value & \ref{monoid_terminal_new} \\
\verb'GrB_Monoid_free'      & free a monoid                                 & \ref{monoid_free} \\
\verb'GrB_get'  & get properties of a monoid       & \ref{get_set_monoid} \\
\verb'GrB_set'  & set the monoid name              & \ref{get_set_monoid} \\
\hline
\end{tabular}
}
\vspace{0.2in}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_new:} create a monoid}
%-------------------------------------------------------------------------------
\label{monoid_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Monoid_new             // create a monoid
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    <type> identity                 // identity value of the monoid
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Monoid_new' creates a monoid.  The operator, \verb'op', must be an
associative binary operator, either built-in or user-defined.

In the definition above, \verb'<type>' is a place-holder for the specific type
of the monoid.  For built-in types, it is the C type corresponding to the
built-in type (see Section~\ref{type}), such as \verb'bool', \verb'int32_t',
\verb'float', or \verb'double'.  In this case, \verb'identity' is a
scalar value of the particular type, not a pointer.  For
user-defined types, \verb'<type>' is \verb'void *', and thus \verb'identity' is
a not a scalar itself but a \verb'void *' pointer to a memory location
containing the identity value of the user-defined operator, \verb'op'.

If \verb'op' is a built-in operator with a known identity value, then the
\verb'identity' parameter is ignored, and its known identity value is used
instead.
%
The \verb'op' cannot be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_wait:} wait for a monoid}
%-------------------------------------------------------------------------------
\label{monoid_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a user-defined monoid
(
    GrB_Monoid monoid,          // monoid to wait for
    int mode                    // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

After creating a user-defined monoid, a GraphBLAS library may choose to exploit
non-blocking mode to delay its creation.  Currently, SuiteSparse:GraphBLAS
currently does nothing except to ensure that the \verb'monoid' is valid.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Monoid\_terminal\_new:} create a monoid with terminal}
%-------------------------------------------------------------------------------
\label{monoid_terminal_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Monoid_terminal_new    // create a monoid that has a terminal value
(
    GrB_Monoid *monoid,             // handle of monoid to create
    GrB_BinaryOp op,                // binary operator of the monoid
    <type> identity,                // identity value of the monoid
    <type> terminal                 // terminal value of the monoid
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Monoid_terminal_new' is identical to \verb'GrB_Monoid_new', except
that it allows for the specification of a {\em terminal value}.  The
\verb'<type>' of the terminal value is the same as the \verb'identity'
parameter; see Section~\ref{monoid_new} for details.

The terminal value of a monoid is the value $z$ for which $z=f(z,y)$ for any
$y$, where $z=f(x,y)$ is the binary operator of the monoid.  This is also
called the {\em annihilator}, but the term {\em terminal value} is used here.
This is because all annihilators are terminal values, but a terminal value need
not be an annihilator, as described in the \verb'MIN' example below.

If the terminal value is encountered during computation, the rest of the
computations can be skipped.  This can greatly improve the performance of
\verb'GrB_reduce', and matrix multiply in specific cases (when a dot product
method is used).  For example, using \verb'GrB_reduce' to compute the sum of
all entries in a \verb'GrB_FP32' matrix with $e$ entries takes $O(e)$ time,
since a monoid based on \verb'GrB_PLUS_FP32' has no terminal value.  By
contrast, a reduction using \verb'GrB_LOR' on a \verb'GrB_BOOL' matrix can take
as little as $O(1)$ time, if a \verb'true' value is found in the matrix very
early.

Monoids based on the built-in \verb'GrB_MIN_*' and \verb'GrB_MAX_*' operators
(for any type), the boolean \verb'GrB_LOR', and the boolean \verb'GrB_LAND'
operators all have terminal values.  For example, the identity value of
\verb'GrB_LOR' is \verb'false', and its terminal value is \verb'true'.  When
computing a reduction of a set of boolean values to a single value, once a
\verb'true' is seen, the computation can exit early since the result is now
known.

If \verb'op' is a built-in operator with known identity and terminal values,
then the \verb'identity' and \verb'terminal' parameters are ignored, and its
known identity and terminal values are used instead.

There may be cases in which the user application needs to use a non-standard
terminal value for a built-in operator.  For example, suppose the matrix has
type \verb'GrB_FP32', but all values in the matrix are known to be
non-negative.  The annihilator value of \verb'MIN' is \verb'-INFINITY', but
this will never be seen.  However, the computation could terminate when
finding the value zero.  This is an example of using a terminal value that is
not actually an annihilator, but it functions like one since the monoid will
operate strictly on non-negative values.

In this case, a monoid created with \verb'GrB_MIN_FP32' will not terminate
early, because the identity and terminal inputs are ignored when using
\verb'GrB_Monoid_new' with a built-in operator as its input.
To create a monoid that can terminate early, create a user-defined operator
that computes the same thing as \verb'GrB_MIN_FP32', and then create a monoid
based on this user-defined operator with a terminal value of zero and an
identity of \verb'+INFINITY'.
%
The \verb'op' cannot be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Monoid\_free:} free a monoid}
%-------------------------------------------------------------------------------
\label{monoid_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free                   // free a user-created monoid
(
    GrB_Monoid *monoid              // handle of monoid to free
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Monoid_frees' frees a monoid.  Either usage:

    {\small
    \begin{verbatim}
    GrB_Monoid_free (&monoid) ;
    GrB_free (&monoid) ; \end{verbatim}}

\noindent
frees the \verb'monoid' and sets \verb'monoid' to \verb'NULL'.  It safely does
nothing if passed a \verb'NULL' handle, or if \verb'monoid == NULL' on input.
It does nothing at all if passed a built-in monoid.