File: GrB_objects_Vector.tex

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (609 lines) | stat: -rw-r--r-- 26,153 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

\newpage
%===============================================================================
\subsection{GraphBLAS vectors: {\sf GrB\_Vector}} %=============================
%===============================================================================
\label{vector}

This section describes a set of methods that create, modify, query,
and destroy a GraphBLAS sparse vector, \verb'GrB_Vector':

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS function   & purpose                                      & Section \\
\hline
\verb'GrB_Vector_new'            & create a vector                  & \ref{vector_new} \\
\verb'GrB_Vector_wait'           & wait for a vector                & \ref{vector_wait} \\
\verb'GrB_Vector_dup'            & copy a vector                    & \ref{vector_dup} \\
\verb'GrB_Vector_clear'          & clear a vector of all entries    & \ref{vector_clear} \\
\verb'GrB_Vector_size'           & size of a vector                 & \ref{vector_size} \\
\verb'GrB_Vector_nvals'          & number of entries in a vector    & \ref{vector_nvals} \\
\verb'GrB_Vector_build'          & build a vector from tuples       & \ref{vector_build} \\
\verb'GxB_Vector_build_Vector'   & build a vector from tuples       & \ref{vector_build_Vector} \\
\verb'GxB_Vector_build_Scalar'   & build a vector from tuples       & \ref{vector_build_Scalar} \\
\verb'GxB_Vector_build_Scalar_Vector' & build a vector from tuples  & \ref{vector_build_Scalar_Vector} \\
\verb'GrB_Vector_setElement'     & add an entry to a vector         & \ref{vector_setElement} \\
\verb'GrB_Vector_extractElement' & get an entry from a vector       & \ref{vector_extractElement} \\
\verb'GxB_Vector_isStoredElement'& check if entry present in vector & \ref{vector_isStoredElement} \\
\verb'GrB_Vector_removeElement'  & remove an entry from a vector    & \ref{vector_removeElement} \\
\verb'GrB_Vector_extractTuples'  & get all entries from a vector    & \ref{vector_extractTuples} \\
\verb'GxB_Vector_extractTuples_Vector'  & get all entries from a vector    & \ref{vector_extractTuples_Vector} \\
\verb'GrB_Vector_resize'         & resize a vector                  & \ref{vector_resize} \\
\verb'GxB_Vector_diag'           & extract a diagonal from a matrix & \ref{vector_diag} \\
\verb'GxB_Vector_memoryUsage'    & memory used by a vector          & \ref{vector_memusage} \\
\verb'GxB_Vector_type'           & type of the matrix               & \ref{vector_type} \\
\verb'GrB_Vector_free'           & free a vector                    & \ref{vector_free} \\
\hline
\hline
% NOTE: GrB_Vector_serialize / deserialize does not appear in the 2.0 C API.
% \verb'GrB_Vector_serializeSize'  & return size of serialized vector & \ref{vector_serialize_size} \\
% \verb'GrB_Vector_serialize'      & serialize a vector               & \ref{vector_serialize} \\
\verb'GxB_Vector_serialize'      & serialize a vector               & \ref{vector_serialize_GxB} \\
% \verb'GrB_Vector_deserialize'    & deserialize a vector             & \ref{vector_deserialize} \\
\verb'GxB_Vector_deserialize'    & deserialize a vector             & \ref{vector_deserialize_GxB} \\
\hline
\hline
\verb'GxB_Vector_sort'          & sort a vector & \ref{vector_sort} \\
\hline
\hline
\verb'GrB_get'  & get properties of a vector       & \ref{get_set_vector} \\
\verb'GrB_set'  & set properties of a vector       & \ref{get_set_vector} \\
\end{tabular}
}

\vspace{0.2in}
Refer to
Section~\ref{serialize_deserialize} for serialization/deserialization methods
and to
Section~\ref{sorting_methods} for sorting methods.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_new:}           create a vector}
%-------------------------------------------------------------------------------
\label{vector_new}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_new     // create a new vector with no entries
(
    GrB_Vector *v,          // handle of vector to create
    GrB_Type type,          // type of vector to create
    GrB_Index n             // vector dimension is n-by-1
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_new' creates a new \verb'n'-by-\verb'1' sparse vector with no
entries in it, of the given type.  This is analogous to MATLAB/Octave statement
\verb'v = sparse (n,1)', except that GraphBLAS can create sparse vectors any
type.  The pattern of the new vector is empty.

\begin{alert}
{\bf SPEC:} \verb'n' may be zero, as an extension to the specification.
\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_wait:} wait for a vector}
%-------------------------------------------------------------------------------
\label{vector_wait}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_wait               // wait for a vector
(
    GrB_Vector w,               // vector to wait for
    int mode                    // GrB_COMPLETE or GrB_MATERIALIZE
) ;
\end{verbatim}
}\end{mdframed}

In non-blocking mode, the computations for a \verb'GrB_Vector' may be delayed.
In this case, the vector is not yet safe to use by multiple independent user
threads.  A user application may force completion of a vector \verb'w' via
\verb'GrB_Vector_wait(w,mode)'.
With a \verb'mode' of \verb'GrB_MATERIALIZE',
all pending computations are finished, and afterwards different user threads may
simultaneously call GraphBLAS operations that use the vector \verb'w' as an
input parameter.
See Section~\ref{omp_parallelism}
if GraphBLAS is compiled without OpenMP.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_dup:}           copy a vector}
%-------------------------------------------------------------------------------
\label{vector_dup}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_dup     // make an exact copy of a vector
(
    GrB_Vector *w,          // handle of output vector to create
    const GrB_Vector u      // input vector to copy
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_dup' makes a deep copy of a sparse vector.
In GraphBLAS, it is possible, and valid, to write the following:

    {\footnotesize
    \begin{verbatim}
    GrB_Vector u, w ;
    GrB_Vector_new (&u, GrB_FP64, n) ;
    w = u ;                         // w is a shallow copy of u  \end{verbatim}}

Then \verb'w' and \verb'u' can be used interchangeably.  However, only a pointer
reference is made, and modifying one of them modifies both, and freeing one of
them leaves the other as a dangling handle that should not be used.
If two different vectors are needed, then this should be used instead:

    {\footnotesize
    \begin{verbatim}
    GrB_Vector u, w ;
    GrB_Vector_new (&u, GrB_FP64, n) ;
    GrB_Vector_dup (&w, u) ;        // like w = u, but making a deep copy \end{verbatim}}

Then \verb'w' and \verb'u' are two different vectors that currently have the
same set of values, but they do not depend on each other.  Modifying one has
no effect on the other.
The \verb'GrB_NAME' is copied into the new vector.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_clear:}         clear a vector of all entries}
%-------------------------------------------------------------------------------
\label{vector_clear}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_clear   // clear a vector of all entries;
(                           // type and dimension remain unchanged.
    GrB_Vector v            // vector to clear
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_clear' clears all entries from a vector.  All values
\verb'v(i)' are now equal to the implicit value, depending on what semiring
ring is used to perform computations on the vector.  The pattern of \verb'v' is
empty, just as if it were created fresh with \verb'GrB_Vector_new'.  Analogous
with \verb'v (:) = sparse(0)' in MATLAB.  The type and dimension of \verb'v' do
not change.  Any pending updates to the vector are discarded.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_size:}          return the size of a vector}
%-------------------------------------------------------------------------------
\label{vector_size}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_size    // get the dimension of a vector
(
    GrB_Index *n,           // vector dimension is n-by-1
    const GrB_Vector v      // vector to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_size' returns the size of a vector (the number of rows).
Analogous to \verb'n = length(v)' or \verb'n = size(v,1)' in MATLAB.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_nvals:}         return the number of entries in a vector}
%-------------------------------------------------------------------------------
\label{vector_nvals}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_nvals   // get the number of entries in a vector
(
    GrB_Index *nvals,       // vector has nvals entries
    const GrB_Vector v      // vector to query
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_nvals' returns the number of entries in a vector.  Roughly
analogous to \verb'nvals = nnz(v)' in MATLAB, except that the implicit value in
GraphBLAS need not be zero and \verb'nnz' (short for ``number of nonzeros'') in
MATLAB is better described as ``number of entries'' in GraphBLAS.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_build:}         build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_build           // build a vector from (I,X) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    const <type> *X,                // array of values of tuples
    GrB_Index nvals,                // number of tuples
    const GrB_BinaryOp dup          // binary function to assemble duplicates
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_build' constructs a sparse vector \verb'w' from a set of
tuples, \verb'I' and \verb'X', each of length \verb'nvals'.  The vector
\verb'w' must have already been initialized with \verb'GrB_Vector_new', and it
must have no entries in it before calling \verb'GrB_Vector_build'.
This function is just like \verb'GrB_Matrix_build' (see
Section~\ref{matrix_build}), except that it builds a sparse vector instead of a
sparse matrix.  For a description of what \verb'GrB_Vector_build' does, refer
to \verb'GrB_Matrix_build'.  For a vector, the list of column indices \verb'J'
in \verb'GrB_Matrix_build' is implicitly a vector of length \verb'nvals' all
equal to zero.  Otherwise the methods are identical.

If \verb'dup' is \verb'NULL', any duplicates result in an error.
If \verb'dup' is the special binary operator \verb'GxB_IGNORE_DUP', then
any duplicates are ignored.  If duplicates appear, the last one in the
list of tuples is taken and the prior ones ignored.  This is not an error.
%
The \verb'dup' operator cannot be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.

\begin{alert}
{\bf SPEC:} Results are defined even if \verb'dup' is non-associative and/or
non-commutative.
\end{alert}

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_build\_Vector:} build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build_Vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_build       // build a vector from (I,X) tuples
(
    GrB_Vector w,               // vector to build
    const GrB_Vector I_vector,  // row indices
    const GrB_Vector X_vector,  // values
    const GrB_BinaryOp dup,     // binary function to assemble duplicates
    const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}

\verb'GxB_Vector_build_Vector' is identical to \verb'GrB_Vector_build', except
that the inputs \verb'I' and \verb'X' are \verb'GrB_Vector' objects, each with
\verb'nvals' entries.  The interpretation of \verb'I_vector' and
\verb'X_vector' are controlled by descriptor settings \verb'GxB_ROWINDEX_LIST'
and \verb'GxB_VALUE_LIST', respectively.  The method can use either the indices
or values of each of the input vectors; the default is to use the values.  See
Section~\ref{ijxvector} for details.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_build\_Scalar:} build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build_Scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_build       // build a vector from (I,scalar) tuples
(
    GrB_Vector w,                   // vector to build
    const GrB_Index *I,             // array of row indices of tuples
    GrB_Scalar scalar,              // value for all tuples
    GrB_Index nvals                 // number of tuples
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Vector_build_Scalar' constructs a sparse vector \verb'w' from a set
of tuples defined by the index array \verb'I' of length \verb'nvals', and a
scalar.  The scalar is the value of all of the tuples.  Unlike
\verb'GrB_Vector_build', there is no \verb'dup' operator to handle duplicate
entries.  Instead, any duplicates are silently ignored (if the number of
duplicates is desired, simply compare the input \verb'nvals' with the value
returned by \verb'GrB_Vector_nvals' after the vector is constructed).  All
entries in the sparsity pattern of \verb'w' are identical, and equal to the
input scalar value.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_build\_Scalar\_Vector:} build a vector from a set of tuples}
%-------------------------------------------------------------------------------
\label{vector_build_Scalar_Vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_build       // build a vector from (I,scalar) tuples
(
    GrB_Vector w,               // vector to build
    const GrB_Vector I_vector,  // row indices
    const GrB_Scalar scalar,    // value for all tuples
    const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Vector_build_Scalar_Vector' is identical to
\verb'GxB_Vector_build_Scalar', except that the inputs \verb'I' and \verb'X'
are \verb'GrB_Vector' objects, each with \verb'nvals' entries.  The
interpretation of \verb'I_vector' is controlled by the descriptor setting
\verb'GxB_ROWINDEX_LIST'.  The method
can use either the indices or values of the \verb'I_input' vector; the default
is to use the values.  See Section~\ref{ijxvector} for details.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_setElement:}    add an entry to a vector}
%-------------------------------------------------------------------------------
\label{vector_setElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_setElement          // w(i) = x
(
    GrB_Vector w,                       // vector to modify
    <type> x,                           // scalar to assign to w(i)
    GrB_Index i                         // index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_setElement' sets a single entry in a vector, \verb'w(i) = x'.
The operation is exactly like setting a single entry in an \verb'n'-by-1
matrix, \verb'A(i,0) = x', where the column index for a vector is implicitly
\verb'j=0'.  For further details of this function, see
\verb'GrB_Matrix_setElement' in Section~\ref{matrix_setElement}.
If an error occurs, \verb'GrB_error(&err,w)' returns details about the error.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extractElement:} get an entry from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractElement  // x = v(i)
(
    <type> *x,                  // scalar extracted (non-opaque, C scalar)
    const GrB_Vector v,         // vector to extract an entry from
    GrB_Index i                 // index
) ;

GrB_Info GrB_Vector_extractElement  // x = v(i)
(
    GrB_Scalar x,               // GrB_Scalar extracted
    const GrB_Vector v,         // vector to extract an entry from
    GrB_Index i                 // index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_extractElement' extracts a single entry from a vector,
\verb'x = v(i)'.  The method is identical to extracting a single entry
\verb'x = A(i,0)' from an \verb'n'-by-1 matrix; see
Section~\ref{matrix_extractElement}.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_isStoredElement:} check if entry present in vector}
%-------------------------------------------------------------------------------
\label{vector_isStoredElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_isStoredElement
(
    const GrB_Vector v,         // check presence of entry v(i)
    GrB_Index i                 // index
) ;
\end{verbatim} } \end{mdframed}

\verb'GxB_Vector_isStoredElement' checks if a single entry \verb'v(i)'
is present, returning \verb'GrB_SUCCESS' if the entry is present or
\verb'GrB_NO_VALUE' otherwise.  The value of \verb'v(i)' is not returned.
See also Section~\ref{matrix_isStoredElement}.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_removeElement:} remove an entry from a vector}
%-------------------------------------------------------------------------------
\label{vector_removeElement}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_removeElement
(
    GrB_Vector w,                   // vector to remove an entry from
    GrB_Index i                     // index
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_removeElement' removes a single entry \verb'w(i)' from a vector.
If no entry is present at \verb'w(i)', then the vector is not modified.
If an error occurs, \verb'GrB_error(&err,w)' returns details about the error.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_extractTuples:} get all entries from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractTuples}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractTuples           // [I,~,X] = find (v)
(
    GrB_Index *I,               // array for returning row indices of tuples
    <type> *X,                  // array for returning values of tuples
    GrB_Index *nvals,           // I, X size on input; # tuples on output
    const GrB_Vector v          // vector to extract tuples from
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_extractTuples' extracts all tuples from a sparse vector,
analogous to \verb'[I,~,X] = find(v)' in MATLAB/Octave.  This function is
identical to its \verb'GrB_Matrix_extractTuples' counterpart, except that the
array of column indices \verb'J' does not appear in this function.  Refer to
Section~\ref{matrix_extractTuples} where further details of this function are
described.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_extractTuples\_Vector:} get all entries from a vector}
%-------------------------------------------------------------------------------
\label{vector_extractTuples_Vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_extractTuples           // [I,~,X] = find (v)
(
    GrB_Vector I_vector,    // row indices
    GrB_Vector X_vector,    // values
    const GrB_Vector V,     // vectors to extract tuples from
    const GrB_Descriptor desc   // currently unused; for future expansion
) ;

\end{verbatim} } \end{mdframed}

\verb'GxB_Vector_extractTuples_Vector' is identical to
\verb'GrB_Vector_extractTuples' except that its two outputs are
\verb'GrB_Vector' objects.  The vectors \verb'I_vector' and \verb'X_vector'
objects must exist on input.  On output, any prior content is erased and
their type, dimensions, and values are revised to contain dense vectors of
length \verb'nvals'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_resize:}          resize a vector}
%-------------------------------------------------------------------------------
\label{vector_resize}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_Vector_resize      // change the size of a vector
(
    GrB_Vector u,               // vector to modify
    GrB_Index nrows_new         // new number of rows in vector
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_resize' changes the size of a vector.  If the dimension
decreases, entries that fall outside the resized vector are deleted.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_diag:} extract a diagonal from a matrix}
%-------------------------------------------------------------------------------
\label{vector_diag}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_diag    // extract a diagonal from a matrix
(
    GrB_Vector v,                   // output vector
    const GrB_Matrix A,             // input matrix
    int64_t k,
    const GrB_Descriptor desc       // unused, except threading control
) ;
\end{verbatim} } \end{mdframed}


\verb'GxB_Vector_diag' extracts a vector \verb'v' from an input matrix
\verb'A', which may be rectangular.  If \verb'k' = 0, the main diagonal of
\verb'A' is extracted; \verb'k' $> 0$ denotes diagonals above the main diagonal
of \verb'A', and \verb'k' $< 0$ denotes diagonals below the main diagonal of
\verb'A'.  Let \verb'A' have dimension $m$-by-$n$.  If \verb'k' is in the range
0 to $n-1$, then \verb'v' has length $\min(m,n-k)$.  If \verb'k' is negative
and in the range -1 to $-m+1$, then \verb'v' has length $\min(m+k,n)$.  If
\verb'k' is outside these ranges, \verb'v' has length 0 (this is not an error).
This function computes the same thing as the MATLAB/Octave statement
\verb'v=diag(A,k)' when \verb'A' is a matrix, except that
\verb'GxB_Vector_diag' can also do typecasting.

The vector \verb'v' must already exist on input, and
\verb'GrB_Vector_size (&len,v)' must return \verb'len' = 0 if \verb'k' $\ge n$
or \verb'k' $\le -m$, \verb'len' $=\min(m,n-k)$ if \verb'k' is in the range 0
to $n-1$, and \verb'len' $=\min(m+k,n)$ if \verb'k' is in the range -1 to
$-m+1$.  Any existing entries in \verb'v' are discarded.  The type of \verb'v'
is preserved, so that if the type of \verb'A' and \verb'v' differ, the entries
are typecasted into the type of \verb'v'.  Any settings made to \verb'v' by
\verb'GrB_set' (bitmap switch and sparsity control) are
unchanged.

\newpage

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_memoryUsage:} memory used by a vector}
%-------------------------------------------------------------------------------
\label{vector_memusage}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_memoryUsage  // return # of bytes used for a vector
(
    size_t *size,           // # of bytes used by the vector v
    const GrB_Vector v      // vector to query
) ;
\end{verbatim} } \end{mdframed}

Returns the memory space required for a vector, in bytes.
By default, any read-only components are not included in the total memory.
This can be changed with via \verb'GrB_set'; see Section~\ref{get_set_global}.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_type:} type of a vector}
%-------------------------------------------------------------------------------
\label{vector_type}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Vector_type    // get the type of a vector
(
    GrB_Type *type,         // returns the type of the vector
    const GrB_Vector v      // vector to query
) ;
\end{verbatim} } \end{mdframed}

Returns the type of a vector.  See \verb'GxB_Matrix_type' for details
(Section~\ref{matrix_type}).

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_free:}          free a vector}
%-------------------------------------------------------------------------------
\label{vector_free}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_free           // free a vector
(
    GrB_Vector *v           // handle of vector to free
) ;
\end{verbatim}
} \end{mdframed}

\verb'GrB_Vector_free' frees a vector.  Either usage:

    {\small
    \begin{verbatim}
    GrB_Vector_free (&v) ;
    GrB_free (&v) ; \end{verbatim}}

\noindent
frees the vector \verb'v' and sets \verb'v' to \verb'NULL'.  It safely does
nothing if passed a \verb'NULL' handle, or if \verb'v == NULL' on input.  Any
pending updates to the vector are abandoned.