1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|
\newpage
%===============================================================================
\subsection{Sorting methods}
%===============================================================================
\label{sorting_methods}
\verb'GxB_Matrix_sort' provides a mechanism to sort all the rows or
all the columns of a matrix, and \verb'GxB_Vector_sort' sorts all the
entries in a vector.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_sort:} sort a vector}
%-------------------------------------------------------------------------------
\label{vector_sort}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_sort
(
// output:
GrB_Vector w, // vector of sorted values
GrB_Vector p, // vector containing the permutation
// input
GrB_BinaryOp op, // comparator op
GrB_Vector u, // vector to sort
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Vector_sort' is identical to sorting the single column of an
\verb'n'-by-1 matrix.
Refer to Section \ref{matrix_sort} for details.
%
The \verb'op' cannot be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_sort:} sort the rows/columns of a matrix}
%-------------------------------------------------------------------------------
\label{matrix_sort}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_sort
(
// output:
GrB_Matrix C, // matrix of sorted values
GrB_Matrix P, // matrix containing the permutations
// input
GrB_BinaryOp op, // comparator op
GrB_Matrix A, // matrix to sort
const GrB_Descriptor desc
) ;
\end{verbatim}
} \end{mdframed}
\verb'GxB_Matrix_sort' sorts all the rows or all the columns of a matrix.
Each row (or column) is sorted separately. The rows are sorted by default.
To sort the columns, use \verb'GrB_DESC_T0'. A comparator operator is
provided to define the sorting order (ascending or descending).
For example, to sort a \verb'GrB_FP64' matrix in ascending order,
use \verb'GrB_LT_FP64' as the \verb'op', and to sort in descending order,
use \verb'GrB_GT_FP64'.
The \verb'op' must have a return value of \verb'GrB_BOOL', and the types of
its two inputs must be the same. The entries in \verb'A' are typecasted to
the inputs of the \verb'op', if necessary. Matrices with user-defined types
can be sorted with a user-defined comparator operator, whose two input types
must match the type of \verb'A', and whose output is \verb'GrB_BOOL'.
The two matrix outputs are \verb'C' and \verb'P'. Any entries present on input
in \verb'C' or \verb'P' are discarded on output. The type of \verb'C' must
match the type of \verb'A' exactly. The dimensions of \verb'C', \verb'P', and
\verb'A' must also match exactly (even with the \verb'GrB_DESC_T0'
descriptor).
With the default sort (by row), suppose \verb'A(i,:)' contains \verb'k'
entries. In this case, \verb'C(i,0:k-1)' contains the values of those entries
in sorted order, and \verb'P(i,0:k-1)' contains their corresponding column
indices in the matrix \verb'A'. If two values are the same, ties are broken
according column index.
If the matrix is sorted by column, and \verb'A(:,j)' contains \verb'k' entries,
then \verb'C(0:k-1,j)' contains the values of those entries in sorted order,
and \verb'P(0:k-1,j)' contains their corresponding row indices in the matrix
\verb'A'. If two values are the same, ties are broken according row index.
The outputs \verb'C' and \verb'P' are both optional; either one (but not both)
may be \verb'NULL', in which case that particular output matrix is not
computed.
%
The \verb'op' cannot be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.
|