1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
\newpage
%===============================================================================
\subsection{{\sf GrB\_apply:} apply a unary, binary, or index-unary operator}
%===============================================================================
\label{apply}
\verb'GrB_apply' is the generic name for 92 specific functions:
\begin{packed_itemize}
\item
\verb'GrB_Vector_apply' and \verb'GrB_Matrix_apply' apply a unary operator to
the entries of a matrix (two variants).
\item \verb'GrB_*_apply_BinaryOp1st_*' applies a binary
operator where a single scalar is provided as the $x$ input to the binary
operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').
\item \verb'GrB_*_apply_BinaryOp2nd_*' applies a binary operator where a
single scalar is provided as the $y$ input to the binary operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').
\item \verb'GrB_*_apply_IndexOp_*' applies a \verb'GrB_IndexUnaryOp',
single scalar is provided as the scalar $y$ input to the index-unary operator.
There are 30 variants, depending on the type of the scalar: (matrix or vector)
x (13 built-in types, one for user-defined types, and a version for
\verb'GrB_Scalar').
\end{packed_itemize}
The generic
name appears in the function prototypes, but the specific function name is used
when describing each variation. When discussing features that apply to all
versions, the simple name \verb'GrB_apply' is used.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_apply:} apply a unary operator to a vector}
%-------------------------------------------------------------------------------
\label{apply_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(u))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_UnaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply' applies a unary operator to the entries of a vector,
analogous to \verb't = op(u)' in MATLAB except the operator \verb'op' is only
applied to entries in the pattern of \verb'u'. Implicit values outside the
pattern of \verb'u' are not affected. The entries in \verb'u' are typecasted
into the \verb'xtype' of the unary operator. The vector \verb't' has the same
type as the \verb'ztype' of the unary operator. The final step is ${\bf w
\langle m \rangle = w \odot t}$, as described in Section~\ref{accummask},
except that all the terms are column vectors instead of matrices.
% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_apply:} apply a unary operator to a matrix}
%-------------------------------------------------------------------------------
\label{apply_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<Mask> = accum (C, op(A)) or op(A')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_UnaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply'
applies a unary operator to the entries of a matrix, analogous to
\verb'T = op(A)' in MATLAB except the operator \verb'op' is only applied to
entries in the pattern of \verb'A'. Implicit values outside the pattern of
\verb'A' are not affected. The input matrix \verb'A' may be transposed first.
The entries in \verb'A' are typecasted into the \verb'xtype' of the unary
operator. The matrix \verb'T' has the same type as the \verb'ztype' of the
unary operator. The final step is ${\bf C \langle M \rangle = C \odot T}$, as
described in Section~\ref{accummask}.
The built-in \verb'GrB_IDENTITY_'$T$ operators (one for each built-in type $T$)
are very useful when combined with this function, enabling it to compute ${\bf
C \langle M \rangle = C \odot A}$. This makes \verb'GrB_apply' a direct
interface to the accumulator/mask function for both matrices and vectors.
The \verb'GrB_IDENTITY_'$T$ operators also provide the fastest stand-alone
typecasting methods in SuiteSparse:GraphBLAS, with all $13 \times 13=169$
methods appearing as individual functions, to typecast between any of the 13
built-in types.
To compute ${\bf C \langle M \rangle = A}$ or ${\bf C \langle M \rangle = C
\odot A}$ for user-defined types, the user application would need to define an
identity operator for the type. Since GraphBLAS cannot detect that it is an
identity operator, it must call the operator to make the full copy \verb'T=A'
and apply the operator to each entry of the matrix or vector.
The other GraphBLAS operation that provides a direct interface to the
accumulator/mask function is \verb'GrB_transpose', which does not require an
operator to perform this task. As a result, \verb'GrB_transpose' can be used
as an efficient and direct interface to the accumulator/mask function for
both built-in and user-defined types. However, it is only available for
matrices, not vectors.
% \newpage
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_BinaryOp1st:} apply a binary operator to a vector; 1st scalar binding}
%===============================================================================
\label{vector_apply1st}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(x,u))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_BinaryOp op, // operator to apply to the entries
<type> x, // first input: scalar x
const GrB_Vector u, // second input: vector u
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply_BinaryOp1st_<type>' applies a binary operator
$z=f(x,y)$ to a vector, where a scalar $x$ is bound to the first input of the
operator.
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.
The \verb'op' can be any binary operator except that it cannot be a
user-defined \verb'GrB_BinaryOp' created by \verb'GxB_BinaryOp_new_IndexOp'.
For backward compatibility with prior versions of SuiteSparse:GraphBLAS,
built-in index-based binary operators such as \verb'GxB_FIRSTI_INT32' may be
used, however. The equivalent index-unary operators are used in their place.
\newpage
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_BinaryOp2nd:} apply a binary operator to a vector; 2nd scalar binding}
%===============================================================================
\label{vector_apply2nd}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_BinaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
<type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply_BinaryOp2nd_<type>' applies a binary operator
$z=f(x,y)$ to a vector, where a scalar $y$ is bound to the second input of the
operator.
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.
The \verb'op' can be any binary operator except that it cannot be a
user-defined \verb'GrB_BinaryOp' created by \verb'GxB_BinaryOp_new_IndexOp'.
For backward compatibility with prior versions of SuiteSparse:GraphBLAS,
built-in index-based binary operators such as \verb'GxB_FIRSTI_INT32' may be
used, however. The equivalent index-unary operators are used in their place.
% \newpage
%===============================================================================
\subsubsection{{\sf GrB\_Vector\_apply\_IndexOp:} apply an index-unary operator to a vector}
%===============================================================================
\label{vector_apply_idxunop}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // w<mask> = accum (w, op(u,y))
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w,t)
const GrB_IndexUnaryOp op, // operator to apply to the entries
const GrB_Vector u, // first input: vector u
const <type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Vector_apply_IndexOp_<type>' applies an index-unary operator
$z=f(x,i,0,y)$ to a vector.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Vector_apply'.
% \newpage
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_BinaryOp1st:} apply a binary operator to a matrix; 1st scalar binding}
%===============================================================================
\label{matrix_apply1st}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<M>=accum(C,op(x,A))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_BinaryOp op, // operator to apply to the entries
<type> x, // first input: scalar x
const GrB_Matrix A, // second input: matrix A
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply_BinaryOp1st_<type>' applies a binary operator
$z=f(x,y)$ to a matrix, where a scalar $x$ is bound to the first input of the
operator.
The scalar \verb'x' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.
The \verb'op' can be any binary operator except that it cannot be a
user-defined \verb'GrB_BinaryOp' created by \verb'GxB_BinaryOp_new_IndexOp'.
For backward compatibility with prior versions of SuiteSparse:GraphBLAS,
built-in index-based binary operators such as \verb'GxB_FIRSTI_INT32' may be
used, however. The equivalent index-unary operators are used in their place.
% \newpage
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_BinaryOp2nd:} apply a binary operator to a matrix; 2nd scalar binding}
%===============================================================================
\label{matrix_apply2nd}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<M>=accum(C,op(A,y))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_BinaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
<type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply_BinaryOp2nd_<type>' applies a binary operator
$z=f(x,y)$ to a matrix, where a scalar $x$ is bound to the second input of the
operator.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.
The \verb'op' can be any binary operator except that it cannot be a
user-defined \verb'GrB_BinaryOp' created by \verb'GxB_BinaryOp_new_IndexOp'.
For backward compatibility with prior versions of SuiteSparse:GraphBLAS,
built-in index-based binary operators such as \verb'GxB_FIRSTI_INT32' may be
used, however. The equivalent index-unary operators are used in their place.
%===============================================================================
\subsubsection{{\sf GrB\_Matrix\_apply\_IndexOp:} apply an index-unary operator to a matrix}
%===============================================================================
\label{matrix_apply_idxunop}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_apply // C<M>=accum(C,op(A,y))
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_IndexUnaryOp op, // operator to apply to the entries
const GrB_Matrix A, // first input: matrix A
const <type> y, // second input: scalar y
const GrB_Descriptor desc // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_Matrix_apply_IndexOp_<type>' applies an index-unary operator
$z=f(x,i,j,y)$ to a matrix.
The scalar \verb'y' can be a non-opaque C scalar corresponding to a built-in
type, a \verb'void *' for user-defined types, or a \verb'GrB_Scalar'.
It is otherwise identical to \verb'GrB_Matrix_apply'.
|