File: GrB_operations_eWiseUnion.tex

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (127 lines) | stat: -rw-r--r-- 5,906 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

\newpage
%===============================================================================
\subsection{{\sf GxB\_eWiseUnion:} element-wise operations, set union} %========
%===============================================================================
\label{eWiseUnion}

\verb'GxB_eWiseUnion' computes a result with the same pattern
\verb'GrB_eWiseAdd', namely, a set union of its two inputs.  It differs in how
the binary operator is applied.

Let $\oplus$ denote the binary operator to be used.  The operator is applied to
every entry in $\bf A$ and $\bf B$.  A pair of scalars, $\alpha$ and $\beta$
(\verb'alpha' and \verb'beta' in the API, respectively) define the
inputs to the operator when entries are present in one matrix but not the
other.

    \vspace{-0.2in}
    {\small
    \begin{tabbing}
    \hspace{2em} \= \hspace{2em} \= \hspace{2em} \= \\
    \> for all entries $(i,j)$ in ${\bf A \cap B}$ \\
    \> \> $t_{ij} = a_{ij} \oplus b_{ij}$ \\
    \> for all entries $(i,j)$ in ${\bf A \setminus B}$ \\
    \> \> $t_{ij} = a_{ij} \oplus \beta $ \\
    \> for all entries $(i,j)$ in ${\bf B \setminus A}$ \\
    \> \> $t_{ij} = \alpha \oplus b_{ij}$
    \end{tabbing}
    }

\verb'GxB_eWiseUnion' is useful in contexts where \verb'GrB_eWiseAdd' cannot be
used because of the typecasting rules of GraphBLAS.  In particular, suppose
\verb'A' and \verb'B' are matrices with a user-defined type, and suppose
\verb'<' is a user-defined operator that compares two entries of this type and
returns a Boolean value.  Then \verb'C=A<B' can be computed with
\verb'GxB_eWiseUnion' but not with \verb'GrB_eWiseAdd'.  In the latter, if
\verb'A(i,j)' is present but \verb'B(i,j)' is not, then \verb'A(i,j)' must
typecasted to the type of \verb'C' (\verb'GrB_BOOL' in this case), and the
assigment \verb'C(i,j) = (bool) A(i,j)' would be performed.  This is not
possible because user-defined types cannot be typecasted to any other type.

Another advantage of \verb'GxB_eWiseUnion' is its performance.  For example,
the MATLAB/Octave expression \verb'C=A-B' computes \verb'C(i,j)=-B(i,j)' when
\verb'A(i,j)' is not present.  This cannot be done with a single call
\verb'GrB_eWiseAdd', but it can be done with a single call to
\verb'GxB_eWiseUnion', with the \verb'GrB_MINUS_FP64' operator, and with both
\verb'alpha' and \verb'beta' scalars equal to zero.  It is possible to
compute this result with a temporary matrix, \verb'E=-B', computed with
\verb'GrB_apply' and \verb'GrB_AINV_FP64', followed by a call to
\verb'GrB_eWiseAdd' to compute \verb'C=A+E', but this is slower than a single
call to \verb'GxB_eWiseUnion', and uses more memory.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_eWiseUnion:} element-wise vector addition}
%-------------------------------------------------------------------------------
\label{eWiseUnion_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_eWiseUnion             // w<mask> = accum (w, u+v)
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_BinaryOp add,         // defines '+' for t=u+v
    const GrB_Vector u,             // first input:  vector u
    const GrB_Scalar alpha,
    const GrB_Vector v,             // second input: vector v
    const GrB_Scalar beta,
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

Identical to \verb'GrB_Vector_eWiseAdd' except that two scalars are used
to define how to compute the result when entries are present in one of
the two input vectors (\verb'u' and \verb'v'), but not the other.
Each of the two input scalars, \verb'alpha' and \verb'beta'
must contain an entry.
When computing the result \verb't=u+v',
if \verb'u(i)' is present but \verb'v(i)' is not, then \verb't(i)=u(i)+beta'.
Likewise,
if \verb'v(i)' is present but \verb'u(i)' is not, then \verb't(i)=alpha+v(i)',
where \verb'+' denotes the binary operator, \verb'add'.
%
The \verb'add' operator may be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_eWiseUnion:} element-wise matrix addition}
%-------------------------------------------------------------------------------
\label{eWiseUnion_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_eWiseUnion             // C<M> = accum (C, A+B)
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_BinaryOp add,         // defines '+' for T=A+B
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar alpha,
    const GrB_Matrix B,             // second input: matrix B
    const GrB_Scalar beta,
    const GrB_Descriptor desc       // descriptor for C, M, A, and B
) ;
\end{verbatim} } \end{mdframed}

Identical to \verb'GrB_Matrix_eWiseAdd' except that two scalars are used
to define how to compute the result when entries are present in one of
the two input matrices (\verb'A' and \verb'B'), but not the other.
Each of the two input scalars, \verb'alpha' and \verb'beta'
must contain an entry.
When computing the result \verb'T=A+B',
if \verb'A(i,j)' is present but \verb'B(i,j))' is not, then \verb'T(i,j)=A(i,j)+beta'.
Likewise,
if \verb'B(i,j)' is present but \verb'A(i,j)' is not, then \verb'T(i,j)=alpha+B(i,j)',
where \verb'+' denotes the binary operator, \verb'add'.
%
The \verb'add' operator may be a binary operator
created by \verb'GxB_BinaryOp_new_IndexOp'.