File: GrB_operations_reduce.tex

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (152 lines) | stat: -rw-r--r-- 7,228 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152


\newpage
%===============================================================================
\subsection{{\sf GrB\_reduce:} reduce to a vector or scalar} %==================
%===============================================================================
\label{reduce}

The generic function name \verb'GrB_reduce' may be used for all specific
functions discussed in this section.  When the details of a specific function
are discussed, the specific name is used for clarity.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_reduce\_Monoid} reduce a matrix to a vector}
%-------------------------------------------------------------------------------
\label{reduce_to_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce                 // w<mask> = accum (w,reduce(A))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_Monoid monoid,        // reduce monoid for t=reduce(A)
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Descriptor desc       // descriptor for w, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_reduce_Monoid'
reduces a matrix to a column vector using a monoid, roughly analogous
to \verb"t = sum (A')" in MATLAB, in the default case, where \verb't' is a
column vector.  By default, the method reduces across the rows to
obtain a column vector; use \verb'GrB_TRAN' to reduce down the columns.

The input matrix \verb'A' may be transposed first.  Its entries are then
typecast into the type of the \verb'reduce' operator or monoid.  The reduction
is applied to all entries in \verb'A (i,:)' to produce the scalar \verb't (i)'.
This is done without the use of the identity value of the monoid.  If the
\verb'i'th row \verb'A (i,:)' has no entries, then \verb'(i)' is not an entry
in \verb't' and its value is implicit.  If \verb'A (i,:)' has a single entry,
then that is the result \verb't (i)' and \verb'reduce' is not applied at all
for the \verb'i'th row.  Otherwise, multiple entries in row \verb'A (i,:)' are
reduced via the \verb'reduce' operator or monoid to obtain a single scalar,
the result \verb't (i)'.

The final step is ${\bf w \langle m \rangle  = w \odot t}$, as described
in Section~\ref{accummask}, except that all the
terms are column vectors instead of matrices.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_reduce\_$<$type$>$:} reduce a vector to a scalar}
%-------------------------------------------------------------------------------
\label{reduce_vector_to_scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce                 // c = accum (c, reduce_to_scalar (u))
(
    <type> *c,                      // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc       // descriptor (currently unused)
) ;

GrB_Info GrB_reduce                 // c = accum (c, reduce_to_scalar (u))
(
    GrB_Scalar c,                   // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Vector u,             // vector to reduce
    const GrB_Descriptor desc       // descriptor (currently unused)
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_reduce_<type>'
reduces a vector to a scalar, analogous to \verb't = sum (u)' in MATLAB,
except that in GraphBLAS any commutative and associative monoid can be used
in the reduction.

The scalar \verb'c' can be a pointer C type: \verb'bool', \verb'int8_t', ...
\verb'float', \verb'double', or \verb'void *' for a user-defined type,
or a \verb'GrB_Scalar'.
If \verb'c' is a \verb'void *' pointer to a user-defined type,
the type must be identical to the type of the vector \verb'u'.
This cannot be checked by GraphBLAS and thus results are undefined if the
types are not the same.

If the vector \verb'u' has no entries, that identity value of the \verb'monoid'
is copied into the scalar \verb't' (unless \verb'c' is a \verb'GrB_Scalar',
in which case \verb't' is an empty \verb'GrB_Scalar', with no entry).
Otherwise, all of the entries in the
vector are reduced to a single scalar using the \verb'monoid'.

The descriptor is unused, but it appears in case it is needed in future
versions of the GraphBLAS API.
This function has no mask so its accumulator/mask step differs from the other
GraphBLAS operations.  It does not use the methods described in
Section~\ref{accummask}, but uses the following method instead.

If \verb'accum' is \verb'NULL', then the scalar \verb't' is typecast into the
type of \verb'c', and \verb'c = t' is the final result.  Otherwise, the scalar
\verb't' is typecast into the \verb'ytype' of the \verb'accum' operator, and
the value of \verb'c' (on input) is typecast into the \verb'xtype' of the
\verb'accum' operator.  Next, the scalar \verb'z = accum (c,t)' is computed, of
the \verb'ztype' of the \verb'accum' operator.  Finally, \verb'z' is typecast
into the final result, \verb'c'.

If \verb'c' is a non-opaque scalar, no error message can be returned by
\verb'GrB_error'.  If \verb'c' is a \verb'GrB_Scalar', then
\verb'GrB_error(&err,c)' can be used to return an error string, if an error
occurs.

%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_reduce\_$<$type$>$:} reduce a matrix to a scalar}
%-------------------------------------------------------------------------------
\label{reduce_matrix_to_scalar}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_reduce                 // c = accum (c, reduce_to_scalar (A))
(
    <type> *c,                      // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc       // descriptor (currently unused)
) ;

GrB_Info GrB_reduce                 // c = accum (c, reduce_to_scalar (A))
(
    GrB_Scalar c,                   // result scalar
    const GrB_BinaryOp accum,       // optional accum for c=accum(c,t)
    const GrB_Monoid monoid,        // monoid to do the reduction
    const GrB_Matrix A,             // matrix to reduce
    const GrB_Descriptor desc       // descriptor (currently unused)
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_reduce_<type>' reduces a matrix \verb'A' to a scalar, roughly
analogous to \verb't = sum (A (:))' in MATLAB.  This function is identical to
reducing a vector to a scalar, since the positions of the entries in a matrix
or vector have no effect on the result.  Refer to the reduction to scalar
described in the previous Section~\ref{reduce_vector_to_scalar}.