File: GrB_operations_select.tex

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (146 lines) | stat: -rw-r--r-- 7,332 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146


\newpage
%===============================================================================
\subsection{{\sf GrB\_select:} select entries based on an index-unary operator}
%===============================================================================
\label{select}

The \verb'GrB_select' function is the generic name for 30 specific functions,
depending on whether it operates on a matrix or vector, and depending on the
type of the scalar \verb'y': (matrix or vector) x (13 built-in types,
\verb'void *' for user-defined types, and a \verb'GrB_Scalar').  The generic
name appears in the function prototypes, but the specific function name is used
when describing each variation.  When discussing features that apply to both
versions, the simple name \verb'GrB_select' is used.

% \newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Vector\_select:} select entries from a vector}
%-------------------------------------------------------------------------------
\label{select_vector}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_select                 // w<mask> = accum (w, op(u))
(
    GrB_Vector w,                   // input/output vector for results
    const GrB_Vector mask,          // optional mask for w, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for z=accum(w,t)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Vector u,             // first input:  vector u
    const <type> y,                 // second input: scalar y
    const GrB_Descriptor desc       // descriptor for w and mask
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Vector_select_*' applies a \verb'GrB_IndexUnaryOp' operator to the
entries of a vector.  If the operator evaluates as \verb'true' for the entry
\verb'u(i)', it is copied to the vector \verb't', or not copied if the operator
evaluates to \verb'false'.   The vector \verb't' is then written to the result
\verb'w' via the mask/accumulator step.  This operation operates on vectors
just as if they were \verb'm'-by-1 matrices, except that GraphBLAS never
transposes a vector via the descriptor.  Refer to the next section
(\ref{select_matrix}) on \verb'GrB_Matrix_select' for more details.

\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GrB\_Matrix\_select:} apply a select operator to a matrix}
%-------------------------------------------------------------------------------
\label{select_matrix}

\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_select                 // C<M>=accum(C,op(A))
(
    GrB_Matrix C,                   // input/output matrix for results
    const GrB_Matrix Mask,          // optional mask for C, unused if NULL
    const GrB_BinaryOp accum,       // optional accum for Z=accum(C,T)
    const GrB_IndexUnaryOp op,      // operator to apply to the entries
    const GrB_Matrix A,             // first input:  matrix A
    const GrB_Scalar y,             // second input: scalar y
    const GrB_Descriptor desc       // descriptor for C, mask, and A
) ;
\end{verbatim} } \end{mdframed}

\verb'GrB_Matrix_select_*' applies a \verb'GrB_IndexUnaryOp' operator to the
entries of a matrix.  If the operator evaluates as \verb'true' for the entry
\verb'A(i,j)', it is copied to the matrix \verb'T', or not copied if the
operator evaluates to \verb'false'.  The input matrix \verb'A' may be
transposed first.  The entries in \verb'A' are typecasted into the \verb'xtype'
of the select operator.  The final step is ${\bf C \langle M \rangle  = C \odot
T}$, as described in Section~\ref{accummask}.

The matrix \verb'T' has the same size and type as \verb'A' (or the transpose of
\verb'A' if the input is transposed via the descriptor).  The entries of
\verb'T' are a subset of those of \verb'A'.  Each entry \verb'A(i,j)' of
\verb'A' is passed to the \verb'op', as $z=f(a_{ij},i,j,y)$.  If
\verb'A' is transposed first then the operator is applied to entries in the
transposed matrix, \verb"A'".  If $z$ is returned as true, then the entry is
copied into \verb'T', unchanged.  If it returns false, the entry does not
appear in \verb'T'.

The action of \verb'GrB_select' with the built-in index-unary operators is
described in the table below.  The MATLAB analogs are precise for \verb'tril'
and \verb'triu', but shorthand for the other operations.  The MATLAB
\verb'diag' function returns a column with the diagonal, if \verb'A' is a
matrix, whereas the matrix \verb'T' in \verb'GrB_select' always has the same
size as \verb'A' (or its transpose if the \verb'GrB_INP0' is set to
\verb'GrB_TRAN').  In the MATLAB analog column, \verb'diag' is as if it
operates like \verb'GrB_select', where \verb'T' is a matrix.

The following operators may be used on matrices with a user-defined type:
\verb'GrB_ROWINDEX_*',
\verb'GrB_COLINDEX_*',
\verb'GrB_DIAGINDEX_*',
\verb'GrB_TRIL', \newline
\verb'GrB_TRIU',
\verb'GrB_DIAG',
\verb'GrB_OFFIAG',
\verb'GrB_COLLE',
\verb'GrB_COLGT',
\verb'GrB_ROWLE',
and
\verb'GrB_ROWGT'.

For floating-point values, comparisons with \verb'NaN' always return false.
The \verb'GrB_VALUE*' operators should not be used with a scalar \verb'y' that is
equal to \verb'NaN'.  For this case, create a user-defined index-unary operator that
performs the test with the ANSI C \verb'isnan' function instead.

\vspace{0.2in}
\noindent
{\footnotesize
\begin{tabular}{lll}
\hline
GraphBLAS name          & MATLAB/Octave     & description \\
                        & analog            & \\
\hline
\verb'GrB_ROWINDEX_*'    & \verb'z=i+y'         & select \verb'A(i,j)' if \verb'i != -y' \\
\verb'GrB_COLINDEX_*'    & \verb'z=j+y'         & select \verb'A(i,j)' if \verb'j != -y' \\
\verb'GrB_DIAGINDEX_*'   & \verb'z=j-(i+y)'     & select \verb'A(i,j)' if \verb'j != i+y' \\
\hline
\verb'GrB_TRIL'    & \verb'z=(j<=(i+y))'  & select entries on or below the \verb'y'th diagonal \\
\verb'GrB_TRIU'    & \verb'z=(j>=(i+y))'  & select entries on or above the \verb'y'th diagonal \\
\verb'GrB_DIAG'    & \verb'z=(j==(i+y))'  & select entries on the \verb'y'th diagonal \\
\verb'GrB_OFFDIAG' & \verb'z=(j!=(i+y))'  & select entries not on the \verb'y'th diagonal \\
\verb'GrB_COLLE'   & \verb'z=(j<=y)'      & select entries in columns 0 to \verb'y' \\
\verb'GrB_COLGT'   & \verb'z=(j>y)'       & select entries in columns \verb'y+1' and above \\
\verb'GrB_ROWLE'   & \verb'z=(i<=y)'      & select entries in rows 0 to \verb'y' \\
\verb'GrB_ROWGT'   & \verb'z=(i>y)'       & select entries in rows \verb'y+1' and above \\
\hline
\verb'GrB_VALUENE_T'     & \verb'z=(aij!=y)'    & select \verb'A(i,j)' if it is not equal to \verb'y'\\
\verb'GrB_VALUEEQ_T'     & \verb'z=(aij==y)'    & select \verb'A(i,j)' is it equal to \verb'y'\\
\verb'GrB_VALUEGT_T'     & \verb'z=(aij>y)'     & select \verb'A(i,j)' is it greater than \verb'y' \\
\verb'GrB_VALUEGE_T'     & \verb'z=(aij>=y)'    & select \verb'A(i,j)' is it greater than or equal to \verb'y' \\
\verb'GrB_VALUELT_T'     & \verb'z=(aij<y)'     & select \verb'A(i,j)' is it less than \verb'y' \\
\verb'GrB_VALUELE_T'     & \verb'z=(aij<=y)'    & select \verb'A(i,j)' is it less than or equal to \verb'y' \\
%
\hline
\end{tabular}
}
\vspace{0.2in}