1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
\newpage
%===============================================================================
\subsection{{\sf GxB\_subassign:} submatrix assignment} %=======================
%===============================================================================
\label{subassign}
The methods described in this section are all variations of the form
\verb'C(I,J)=A', which modifies a submatrix of the matrix \verb'C'. All
methods can be used in their generic form with the single name
\verb'GxB_subassign'. This is reflected in the prototypes. However, to avoid
confusion between the different kinds of assignment, the name of the specific
function is used when describing each variation. If the discussion applies to
all variations, the simple name \verb'GxB_subassign' is used.
See Section~\ref{colon} for a description of the row indices
\verb'I' and \verb'ni', and the column indices
\verb'J' and \verb'nj'.
\verb'GxB_subassign' is very similar to \verb'GrB_assign', described in
Section~\ref{assign}. The two operations are compared and contrasted in
Section~\ref{compare_assign}. For a discussion of how duplicate indices
are handled in \verb'I' and \verb'J', see Section~\ref{duplicates}.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign:} assign to a subvector }
%-------------------------------------------------------------------------------
\label{subassign_vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)
const GrB_Vector u, // first input: vector u
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w(I) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_subassign' operates on a subvector \verb'w(I)' of \verb'w',
modifying it with the vector \verb'u'. The method is identical to
\verb'GxB_Matrix_subassign' described in Section~\ref{subassign_matrix}, where
all matrices have a single column each. The \verb'mask' has the same size as
\verb'w(I)' and \verb'u'. The only other difference is that the input \verb'u'
in this method is not transposed via the \verb'GrB_INP0' descriptor.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign\_Vector:} assign to a subvector }
%-------------------------------------------------------------------------------
\label{subassign_vector_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),u)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),t)
const GrB_Vector u, // first input: vector u
const GrB_Vector I_vector, // row indices
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_subassign_Vector' is identical to \verb'GxB_Vector_subassign',
except that the row indices are given by the \verb'GrB_Vector I' with \verb'ni'
entries. The interpretation of \verb'I_vector' is controlled by descriptor
setting \verb'GxB_ROWINDEX_LIST'. The method can use either the indices or
values of the input vector, or it can use the values as a stride
(\verb'lo:inc:hi'); the default is to use the values. See Section~\ref{ijxvector}
for details.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign:} assign to a submatrix }
%-------------------------------------------------------------------------------
\label{subassign_matrix}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),T)
const GrB_Matrix A, // first input: matrix A
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(I,J), Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_subassign' operates only on a submatrix \verb'S' of \verb'C',
modifying it with the matrix \verb'A'. For this operation, the result is not
the entire matrix \verb'C', but a submatrix \verb'S=C(I,J)' of \verb'C'. The
steps taken are as follows, except that ${\bf A}$ may be optionally transposed
via the \verb'GrB_INP0' descriptor option.
\vspace{0.1in}
\begin{tabular}{lll}
\hline
Step & GraphBLAS & description \\
& notation & \\
\hline
1 & ${\bf S} = {\bf C(I,J)}$ & extract the ${\bf C(I,J)}$ submatrix \\
2 & ${\bf S \langle M \rangle} = {\bf S} \odot {\bf A}$ & apply the accumulator/mask to the submatrix ${\bf S}$\\
3 & ${\bf C(I,J)}= {\bf S}$ & put the submatrix ${\bf S}$ back into ${\bf C(I,J)}$ \\
\hline
\end{tabular}
\vspace{0.1in}
The accumulator/mask step in Step 2 is the same as for all other GraphBLAS
operations, described in Section~\ref{accummask}, except that for
\verb'GxB_subassign', it is applied to just the submatrix ${\bf S} = {\bf
C(I,J)}$, and thus the \verb'Mask' has the same size as ${\bf A}$,
${\bf S}$, and ${\bf C(I,J)}$.
The \verb'GxB_subassign' operation is the reverse of matrix extraction:
\begin{itemize}
\item
For submatrix extraction, \verb'GrB_Matrix_extract',
the submatrix \verb'A(I,J)' appears on the right-hand side of the assignment,
\verb'C=A(I,J)', and entries outside of the submatrix are not accessed and do
not take part in the computation.
\item
For submatrix assignment, \verb'GxB_Matrix_subassign',
the submatrix \verb'C(I,J)' appears on the left-hand-side of the assignment,
\verb'C(I,J)=A', and entries outside of the submatrix are not accessed and do
not take part in the computation.
\end{itemize}
In both methods, the accumulator and mask modify the submatrix of the
assignment; they simply differ on which side of the assignment the submatrix
resides on. In both cases, if the \verb'Mask' matrix is present it is the same
size as the submatrix:
\begin{itemize}
\item
For submatrix extraction,
${\bf C \langle M \rangle = C \odot A(I,J)}$ is computed,
where the submatrix is on the right.
The mask ${\bf M}$ has the same size as the submatrix ${\bf A(I,J)}$.
\item
For submatrix assignment,
${\bf C(I,J) \langle M \rangle = C(I,J) \odot A}$ is computed,
where the submatrix is on the left.
The mask ${\bf M}$ has the same size as the submatrix ${\bf C(I,J)}$.
\end{itemize}
In Step 1, the submatrix \verb'S' is first computed by the
\verb'GrB_Matrix_extract' operation, \verb'S=C(I,J)'.
Step 2 accumulates the results ${\bf S \langle M \rangle = S \odot T}$,
exactly as described in Section~\ref{accummask}, but operating on the submatrix
${\bf S}$, not ${\bf C}$, using the optional \verb'Mask' and \verb'accum'
operator. The matrix ${\bf T}$ is simply ${\bf T}={\bf A}$, or ${\bf T}={\bf
A}^{\sf T}$ if ${\bf A}$ is transposed via the \verb'desc' descriptor,
\verb'GrB_INP0'. The \verb'GrB_REPLACE' option in the descriptor clears ${\bf
S}$ after computing ${\bf Z = T}$ or ${\bf Z = C \odot T}$, not all of ${\bf
C}$ since this operation can only modify the specified submatrix of ${\bf C}$.
Finally, Step 3 writes the result (which is the modified submatrix \verb'S' and
not all of \verb'C') back into the \verb'C' matrix that contains it, via the
assignment \verb'C(I,J)=S', using the reverse operation from the method
described for matrix extraction:
{\footnotesize
\begin{verbatim}
for i = 1:ni
for j = 1:nj
if (S (i,j).pattern)
C (I(i),J(j)).matrix = S (i,j).matrix ;
C (I(i),J(j)).pattern = true ;
end
end
end \end{verbatim}}
\paragraph{\bf Performance considerations:} % C(I,J) = A
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GrB_ROWMAJOR'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GrB_COLMAJOR'. The opposite is true
if \verb'A' is transposed.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign\_Vector:} assign to a submatrix }
%-------------------------------------------------------------------------------
\label{subassign_matrix_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),A)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // accum for Z=accum(C(I,J),T)
const GrB_Matrix A, // first input: matrix A
const GrB_Vector I_vector, // row indices
const GrB_Vector J_vector, // column indices
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_subassign_Vector' is identical to \verb'GxB_Matrix_subassign',
except that the row indices are given by the \verb'GrB_Vector I' with \verb'ni'
entries, and the column indices are given by the \verb'GrB_Vector J' with
\verb'nj' entries. The interpretation of \verb'I_vector' and \verb'J_vector'
are controlled by descriptor setting \verb'GxB_ROWINDEX_LIST' and
\verb'GxB_COLINDEX_LIST', respectively. The method can use either the indices
or values of each of the input vectors, or it can use the values as a stride
(\verb'lo:inc:hi'); the default is to use the values. See Section~\ref{ijxvector}
for details.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Col\_subassign:} assign to a sub-column of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_column}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(I,j), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)
const GrB_Vector u, // input vector
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index j, // column index
const GrB_Descriptor desc // descriptor for C(I,j) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Col_subassign' modifies a single sub-column of a matrix \verb'C'. It
is the same as \verb'GxB_Matrix_subassign' where the index vector \verb'J[0]=j'
is a single column index (and thus \verb'nj=1'), and where all matrices in
\verb'GxB_Matrix_subassign' (except \verb'C') consist of a single column. The
\verb'mask' vector has the same size as \verb'u' and the sub-column
\verb'C(I,j)'. The input descriptor \verb'GrB_INP0' is ignored; the input
vector \verb'u' is not transposed. Refer to \verb'GxB_Matrix_subassign' for
further details.
\paragraph{\bf Performance considerations:} % C(I,j) = u
\verb'GxB_Col_subassign' is much faster than \verb'GxB_Row_subassign' if the
format of \verb'C' is \verb'GrB_COLMAJOR'. \verb'GxB_Row_subassign' is much
faster than \verb'GxB_Col_subassign' if the format of \verb'C' is
\verb'GrB_ROWMAJOR'.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Col\_subassign\_Vector:} assign to a sub-column of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_column_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,j)<mask> = accum (C(I,j),u)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(I,j), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(I,j),t)
const GrB_Vector u, // input vector
const GrB_Vector I_vector, // row indices
const GrB_Index j, // column index
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Col_subassign_Vector' is identical to \verb'GxB_Col_subassign',
except that the row indices are given by the \verb'GrB_Vector I' with \verb'ni'
entries. The interpretation of \verb'I_vector' is controlled by descriptor
setting \verb'GxB_ROWINDEX_LIST'. The method can use either the indices or
values of the input vector, or it can use the values as a stride
(\verb'lo:inc:hi'); the default is to use the values. See Section~\ref{ijxvector}
for details.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Row\_subassign:} assign to a sub-row of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_row}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(i,J)<mask'> = accum (C(i,J),u')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(i,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)
const GrB_Vector u, // input vector
const GrB_Index i, // row index
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(i,J) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Row_subassign' modifies a single sub-row of a matrix \verb'C'. It is
the same as \verb'GxB_Matrix_subassign' where the index vector \verb'I[0]=i' is
a single row index (and thus \verb'ni=1'), and where all matrices in
\verb'GxB_Matrix_subassign' (except \verb'C') consist of a single row. The
\verb'mask' vector has the same size as \verb'u' and the sub-column
\verb'C(I,j)'. The input descriptor \verb'GrB_INP0' is ignored; the input
vector \verb'u' is not transposed. Refer to \verb'GxB_Matrix_subassign' for
further details.
\paragraph{\bf Performance considerations:} % C(i,J) = u'
\verb'GxB_Col_subassign' is much faster than \verb'GxB_Row_subassign' if the
format of \verb'C' is \verb'GrB_COLMAJOR'. \verb'GxB_Row_subassign' is much
faster than \verb'GxB_Col_subassign' if the format of \verb'C' is
\verb'GrB_ROWMAJOR'.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Row\_subassign\_Vector:} assign to a sub-row of a matrix}
%-------------------------------------------------------------------------------
\label{subassign_row_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_Row_subassign_Vector // C(i,J)<mask'> = accum (C(i,J),u')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Vector mask, // optional mask for C(i,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(C(i,J),t)
const GrB_Vector u, // input vector
const GrB_Index i, // row index
const GrB_Vector J_vector, // column indices
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Row_subassign_Vector' is identical to \verb'GrB_Row_subassign',
except that the column indices are given by the \verb'GrB_Vector J' with \verb'nj'
entries. The interpretation of \verb'J_vector' is controlled by descriptor
setting \verb'GxB_COLINDEX_LIST'. The method can use either the indices or
values of the input vector, or it can use the values as a stride
(\verb'lo:inc:hi'); the default is to use the values. See Section~\ref{ijxvector}
for details.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign\_$<$type$>$:} assign a scalar to a subvector}
%-------------------------------------------------------------------------------
\label{subassign_vector_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w(I), unused if NULL
const GrB_BinaryOp accum, // optional accum for z=accum(w(I),x)
const <type> x, // scalar to assign to w(I)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Descriptor desc // descriptor for w(I) and mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_subassign_<type>' assigns a single scalar to an entire
subvector of the vector \verb'w'. The operation is exactly like setting a
single entry in an \verb'n'-by-1 matrix, \verb'A(I,0) = x', where the column
index for a vector is implicitly \verb'j=0'.
If \verb'x' is a \verb'GrB_Scalar', the nonpolymorphic name of the method is
\verb'GxB_Vector_subassign_Scalar'.
For further details of this
function, see \verb'GxB_Matrix_subassign_<type>' in
Section~\ref{subassign_matrix_scalar}.
\newpage
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Vector\_subassign\_Scalar\_Vector:} assign a scalar to a subvector}
%-------------------------------------------------------------------------------
\label{subassign_vector_scalar_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // w(I)<mask> = accum (w(I),x)
(
GrB_Vector w, // input/output vector for results
const GrB_Vector mask, // optional mask for w, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(w(I),x)
const GrB_Scalar scalar, // scalar to assign to w(I)
const GrB_Vector I_vector, // row indices
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Vector_subassign_Scalar_Vector' is identical to \verb'GxB_Vector_subassign_Scalar',
except that the row indices are given by the \verb'GrB_Vector I' with \verb'ni'
entries. The interpretation of \verb'I_vector' is controlled by descriptor
setting \verb'GxB_ROWINDEX_LIST'. The method can use either the indices or
values of the input vector, or it can use the values as a stride
(\verb'lo:inc:hi'); the default is to use the values. See Section~\ref{ijxvector}
for details.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign\_$<$type$>$:} assign a scalar to a submatrix}
%-------------------------------------------------------------------------------
\label{subassign_matrix_scalar}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)
const <type> x, // scalar to assign to C(I,J)
const GrB_Index *I, // row indices
const GrB_Index ni, // number of row indices
const GrB_Index *J, // column indices
const GrB_Index nj, // number of column indices
const GrB_Descriptor desc // descriptor for C(I,J) and Mask
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_subassign_<type>' assigns a single scalar to an entire
submatrix of \verb'C', like the {\em scalar expansion} \verb'C(I,J)=x' in
MATLAB. The scalar \verb'x' is implicitly expanded into a matrix \verb'A' of
size \verb'ni' by \verb'nj', with all entries present and equal to \verb'x',
and then the matrix \verb'A' is assigned to
\verb'C(I,J)' using the same method as in \verb'GxB_Matrix_subassign'. Refer
to that function in Section~\ref{subassign_matrix} for further details.
For the accumulation step, the scalar \verb'x' is typecasted directly into the
type of \verb'C' when the \verb'accum' operator is not applied to it, or into
the \verb'ytype' of the \verb'accum' operator, if \verb'accum' is not NULL, for
entries that are already present in \verb'C'.
The \verb'<type> x' notation is otherwise the same as
\verb'GrB_Matrix_setElement' (see Section~\ref{matrix_setElement}). Any value
can be passed to this function and its type will be detected, via the
\verb'_Generic' feature of C11. For a user-defined type, \verb'x' is a
\verb'void *' pointer that points to a memory space holding a single entry of a
scalar that has exactly the same user-defined type as the matrix \verb'C'.
This user-defined type must exactly match the user-defined type of \verb'C'
since no typecasting is done between user-defined types.
If a \verb'void *' pointer is passed in and the type of the underlying scalar
does not exactly match the user-defined type of \verb'C', then results are
undefined. No error status will be returned since GraphBLAS has no way of
catching this error.
If \verb'x' is a \verb'GrB_Scalar', the nonpolymorphic name of the method is \newline
\verb'GxB_Matrix_subassign_Scalar'. In this case, if \verb'x' has no entry, then
it is implicitly expanded into a matrix \verb'A' of size \verb'ni' by
\verb'nj', with no entries present.
\paragraph{\bf Performance considerations:} % C(I,J) = scalar
If \verb'A' is not transposed: if \verb'|I|' is small, then it is fastest if
the format of \verb'C' is \verb'GrB_ROWMAJOR'; if \verb'|J|' is small, then it is
fastest if the format of \verb'C' is \verb'GrB_COLMAJOR'. The opposite is true
if \verb'A' is transposed.
%-------------------------------------------------------------------------------
\subsubsection{{\sf GxB\_Matrix\_subassign\_Scalar\_Vector:} assign a scalar to a submatrix}
%-------------------------------------------------------------------------------
\label{subassign_matrix_scalar_Vector}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GxB_subassign // C(I,J)<Mask> = accum (C(I,J),x)
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C(I,J), unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C(I,J),x)
const GrB_Scalar scalar, // scalar to assign to C(I,J)
const GrB_Vector I_vector, // row indices
const GrB_Vector J_vector, // column indices
const GrB_Descriptor desc
) ;
\end{verbatim} } \end{mdframed}
\verb'GxB_Matrix_subassign_Scalar_Vector' is identical to \verb'GxB_Matrix_subassign_Scalar',
except that the row indices are given by the \verb'GrB_Vector I' with \verb'ni'
entries, and the column indices are given by the \verb'GrB_Vector J' with
\verb'nj' entries. The interpretation of \verb'I_vector' and \verb'J_vector'
are controlled by descriptor setting \verb'GxB_ROWINDEX_LIST' and
\verb'GxB_COLINDEX_LIST', respectively. The method can use either the indices
or values of each of the input vectors, or it can use the values as a stride
(\verb'lo:inc:hi'); the default is to use the values. See Section~\ref{ijxvector}
for details.
|