1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
|
\newpage
%===============================================================================
\subsection{{\sf GrB\_transpose:} transpose a matrix} %=========================
%===============================================================================
\label{transpose}
\begin{mdframed}[userdefinedwidth=6in]
{\footnotesize
\begin{verbatim}
GrB_Info GrB_transpose // C<Mask> = accum (C, A')
(
GrB_Matrix C, // input/output matrix for results
const GrB_Matrix Mask, // optional mask for C, unused if NULL
const GrB_BinaryOp accum, // optional accum for Z=accum(C,T)
const GrB_Matrix A, // first input: matrix A
const GrB_Descriptor desc // descriptor for C, Mask, and A
) ;
\end{verbatim} } \end{mdframed}
\verb'GrB_transpose'
transposes a matrix \verb'A', just like the array transpose \verb"T = A.'" in
MATLAB. The internal result matrix \verb"T = A'" (or merely \verb"T = A" if
\verb'A' is transposed via the descriptor) has the same type as \verb'A'. The
final step is ${\bf C \langle M \rangle = C \odot T}$, as described in
Section~\ref{accummask}, which typecasts \verb'T' as needed and applies the
mask and accumulator.
To be consistent with the rest of the GraphBLAS API regarding the
descriptor, the input matrix \verb'A' may be transposed first by
setting the \verb'GrB_INP0' setting to \verb'GrB_TRAN'. This results in
a double transpose, and thus \verb'A' is not transposed is computed.
|