1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
//------------------------------------------------------------------------------
// GB_add_sparse_M_sparse: C(:,j)<M>=A(:,j)+B(:,j), C and M sparse/hyper
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C and M are both sparse or hyper.
{
//--------------------------------------------------------------------------
// setup for C(:,j)<M> = A(:,j) + B(:,j), where C and M are sparse/hyper
//--------------------------------------------------------------------------
// get M(:,j) where M is sparse or hypersparse
int64_t pM = -1 ;
int64_t pM_end = -1 ;
if (fine_task)
{
// A fine task operates on Mi,Mx [pM...pM_end-1],
// which is a subset of the vector M(:,j)
pM = TaskList [taskid].pM ;
pM_end = TaskList [taskid].pM_end ;
}
else
{
int64_t kM = -1 ;
if (Ch_is_Mh)
{
// Ch is the same as Mh (a deep copy)
ASSERT (Ch != NULL) ;
ASSERT (M_is_hyper) ;
#ifdef GB_DEBUG
GB_Mh_DECLARE (Mh, const) ; GB_Mh_PTR (Mh, M) ;
ASSERT (GB_IGET (Ch, k) == GB_IGET (Mh, k)) ;
#endif
kM = k ;
}
else
{
kM = (C_to_M == NULL) ? j : C_to_M [k] ;
}
if (kM >= 0)
{
pM = GB_IGET (Mp, kM ) ;
pM_end = GB_IGET (Mp, kM+1) ;
}
}
// The "easy mask" condition requires M to be sparse/hyper and structural.
// A and B cannot be bitmap, and one of these 3 conditions must hold:
// (1) all entries are present in A(:,j) and M == B
// (2) all entries are present in B(:,j) and M == A
// (3) both A and B are aliased to M
// This test is done on a vector-by-vector basis. See GB_add_sparsity.c
// for a global test.
if (Mask_struct && // M must be structural
!A_is_bitmap && // A must not be bitmap
!B_is_bitmap && // B must not be bitmap
((adense && M_is_B) || // one of 3 conditions holds
(bdense && M_is_A) ||
(M_is_A && M_is_B)))
{
//----------------------------------------------------------------------
// special case: M is present and very easy to use
//----------------------------------------------------------------------
// ------------------------------------------
// C <M> = A + B
// ------------------------------------------
// sparse sparse sparse sparse
// sparse sparse sparse full
// sparse sparse full sparse
// sparse sparse full full
// A and B are sparse, hypersparse or full, not bitmap.
int64_t mjnz = pM_end - pM ; // nnz (M (:,j))
#if ( GB_ADD_PHASE == 1 )
// M is structural, and sparse or hypersparse, so every entry in the
// mask is guaranteed to appear in A+B. The symbolic count is thus
// trivial.
cjnz = mjnz ;
#else
// copy the pattern into C (:,j)
int64_t pC_start = pC ;
int64_t pM_start = pM ;
#if defined ( GB_DEBUG ) || !defined ( GB_ISO_ADD )
int64_t pA_offset = pA_start - iA_first ;
int64_t pB_offset = pB_start - iB_first ;
#endif
if (adense && M_is_B)
{
//------------------------------------------------------------------
// Method11: A dense, M == B
//------------------------------------------------------------------
GB_PRAGMA_SIMD_VECTORIZE
for (int64_t p = 0 ; p < mjnz ; p++)
{
int64_t pM = p + pM_start ;
int64_t pC = p + pC_start ;
int64_t i = GB_IGET (Mi, pM) ;
GB_ISET (Ci, pC, i) ; // Ci [pC] = i
ASSERT (GB_MCAST (Mx, pM, msize)) ;
ASSERT (GBi_A (Ai, pA_offset + i, vlen) == i) ;
ASSERT (GBi_B (Bi, pM, vlen) == i) ;
#ifndef GB_ISO_ADD
GB_LOAD_A (aij, Ax, pA_offset + i, A_iso) ;
GB_LOAD_B (bij, Bx, pM, B_iso) ;
GB_EWISEOP (Cx, pC, aij, bij, i, j) ;
#endif
}
}
else if (bdense && M_is_A)
{
//------------------------------------------------------------------
// Method12: B dense, M == A
//------------------------------------------------------------------
GB_PRAGMA_SIMD_VECTORIZE
for (int64_t p = 0 ; p < mjnz ; p++)
{
int64_t pM = p + pM_start ;
int64_t pC = p + pC_start ;
int64_t i = GB_IGET (Mi, pM) ;
GB_ISET (Ci, pC, i) ; // Ci [pC] = i
ASSERT (GB_MCAST (Mx, pM, msize)) ;
ASSERT (GBi_A (Ai, pM, vlen) == i) ;
ASSERT (GBi_B (Bi, pB_offset + i, vlen) == i) ;
#ifndef GB_ISO_ADD
GB_LOAD_A (aij, Ax, pM, A_iso) ;
GB_LOAD_B (bij, Bx, pB_offset + i, B_iso) ;
GB_EWISEOP (Cx, pC, aij, bij, i, j) ;
#endif
}
}
else // (M == A) && (M == B)
{
//------------------------------------------------------------------
// Method13: M == A == B: all three matrices the same
//------------------------------------------------------------------
GB_PRAGMA_SIMD_VECTORIZE
for (int64_t p = 0 ; p < mjnz ; p++)
{
int64_t pM = p + pM_start ;
int64_t pC = p + pC_start ;
int64_t i = GB_IGET (Mi, pM) ;
GB_ISET (Ci, pC, i) ; // Ci [pC] = i
#ifndef GB_ISO_ADD
#if GB_OP_IS_SECOND
GB_LOAD_B (t, Bx, pM, B_iso) ;
#else
GB_LOAD_A (t, Ax, pM, A_iso) ;
#endif
GB_EWISEOP (Cx, pC, t, t, i, j) ;
#endif
}
}
#endif
}
else
{
//----------------------------------------------------------------------
// Method14: C and M are sparse or hypersparse
//----------------------------------------------------------------------
// ------------------------------------------
// C <M> = A + B
// ------------------------------------------
// sparse sparse sparse sparse (*)
// sparse sparse sparse bitmap (*)
// sparse sparse sparse full (*)
// sparse sparse bitmap sparse (*)
// sparse sparse bitmap bitmap (+)
// sparse sparse bitmap full (+)
// sparse sparse full sparse (*)
// sparse sparse full bitmap (+)
// sparse sparse full full (+)
// (*) This method is efficient except when either A or B are sparse,
// and when M is sparse but with many entries. When M is sparse and
// either A or B are sparse, the method is designed to be very
// efficient when M is very sparse compared with A and/or B. It
// traverses all entries in the sparse M, and (for sparse A or B) does
// a binary search for entries in A or B. In that case, if M has many
// entries, the mask M should be ignored, and C=A+B should be computed
// without any mask. The test for when to use M here should ignore A
// or B if they are bitmap or full.
// If A or B are aliased to M, but the rest of "easy mask" condition is
// not triggered, then GB_add_sparsity will decide to apply the mask
// later, not in this phase. As a result, if M is present, it is not
// aliased to A or B.
// (+) TODO: if C and M are sparse/hyper, and A and B are both
// bitmap/full, then use GB_emult_04_template instead, but with (Ab [p]
// || Bb [p]) instead of (Ab [p] && Bb [p]).
// A and B can have any sparsity pattern (hypersparse, sparse, bitmap,
// or full).
for ( ; pM < pM_end ; pM++)
{
//------------------------------------------------------------------
// get M(i,j) for A(i,j) + B (i,j)
//------------------------------------------------------------------
int64_t i = GB_IGET (Mi, pM) ;
bool mij = GB_MCAST (Mx, pM, msize) ;
if (!mij) continue ;
//------------------------------------------------------------------
// get A(i,j)
//------------------------------------------------------------------
bool afound ;
if (adense)
{
// A is dense, bitmap, or full; use quick lookup
pA = pA_start + (i - iA_first) ;
afound = GBb_A (Ab, pA) ;
}
else
{
// A is sparse; use binary search. This is slow unless
// M is very sparse compared with A.
int64_t apright = pA_end - 1 ;
afound = GB_binary_search (i, Ai, GB_Ai_IS_32, &pA, &apright) ;
}
ASSERT (GB_IMPLIES (afound, GBi_A (Ai, pA, vlen) == i)) ;
//------------------------------------------------------------------
// get B(i,j)
//------------------------------------------------------------------
bool bfound ;
if (bdense)
{
// B is dense; use quick lookup
pB = pB_start + (i - iB_first) ;
bfound = GBb_B (Bb, pB) ;
}
else
{
// B is sparse; use binary search. This is slow unless
// M is very sparse compared with B.
int64_t bpright = pB_end - 1 ;
bfound = GB_binary_search (i, Bi, GB_Bi_IS_32, &pB, &bpright) ;
}
ASSERT (GB_IMPLIES (bfound, GBi_B (Bi, pB, vlen) == i)) ;
//------------------------------------------------------------------
// C(i,j) = A(i,j) + B(i,j)
//------------------------------------------------------------------
if (afound && bfound)
{
// C (i,j) = A (i,j) + B (i,j)
#if ( GB_ADD_PHASE == 1 )
cjnz++ ;
#else
GB_ISET (Ci, pC, i) ; // Ci [pC] = i ;
#ifndef GB_ISO_ADD
GB_LOAD_A (aij, Ax, pA, A_iso) ;
GB_LOAD_B (bij, Bx, pB, B_iso) ;
GB_EWISEOP (Cx, pC, aij, bij, i, j) ;
#endif
pC++ ;
#endif
}
else if (afound)
{
#if ( GB_ADD_PHASE == 1 )
cjnz++ ;
#else
GB_ISET (Ci, pC, i) ; // Ci [pC] = i ;
#ifndef GB_ISO_ADD
#if GB_IS_EWISEUNION
{
// C (i,j) = A(i,j) + beta
GB_LOAD_A (aij, Ax, pA, A_iso) ;
GB_EWISEOP (Cx, pC, aij, beta_scalar, i, j) ;
}
#else
{
// C (i,j) = A (i,j)
GB_COPY_A_to_C (Cx, pC, Ax, pA, A_iso) ;
}
#endif
#endif
pC++ ;
#endif
}
else if (bfound)
{
#if ( GB_ADD_PHASE == 1 )
cjnz++ ;
#else
GB_ISET (Ci, pC, i) ; // Ci [pC] = i ;
#ifndef GB_ISO_ADD
#if GB_IS_EWISEUNION
{
// C (i,j) = alpha + B(i,j)
GB_LOAD_B (bij, Bx, pB, B_iso) ;
GB_EWISEOP (Cx, pC, alpha_scalar, bij, i, j) ;
}
#else
{
// C (i,j) = B (i,j)
GB_COPY_B_to_C (Cx, pC, Bx, pB, B_iso) ;
}
#endif
#endif
pC++ ;
#endif
}
}
#if ( GB_ADD_PHASE == 2 )
ASSERT (pC == pC_end) ;
#endif
}
}
|