1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
//------------------------------------------------------------------------------
// GB_add_sparse_template: C=A+B, C<M>=A+B when C is sparse/hypersparse
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C is sparse or hypersparse:
// ------------------------------------------
// C = A + B
// ------------------------------------------
// sparse . sparse sparse
// ------------------------------------------
// C <M> = A + B
// ------------------------------------------
// sparse sparse sparse sparse
// sparse sparse sparse bitmap
// sparse sparse sparse full
// sparse sparse bitmap sparse
// sparse sparse bitmap bitmap
// sparse sparse bitmap full
// sparse sparse full sparse
// sparse sparse full bitmap
// sparse sparse full full
// sparse bitmap sparse sparse
// sparse full sparse sparse
// ------------------------------------------
// C <!M> = A + B
// ------------------------------------------
// sparse bitmap sparse sparse
// sparse full sparse sparse
// If all four matrices are sparse/hypersparse, and C<!M>=A+B is being
// computed, then M is passed in as NULL to GB_add_phase*.
// GB_add_sparsity returns apply_mask as false. The methods below do
// not handle the case when C is sparse, M is sparse, and !M is used.
// All other uses of !M when M is sparse result in a bitmap structure
// for C, and this is handled by GB_add_bitmap_template.
// For this case: the mask is done later, so C=A+B is computed here:
// ------------------------------------------
// C <!M> = A + B
// ------------------------------------------
// sparse sparse sparse sparse (mask later)
{
//--------------------------------------------------------------------------
// phase1: count entries in each C(:,j)
// phase2: compute C
//--------------------------------------------------------------------------
#pragma omp parallel for num_threads(C_nthreads) schedule(dynamic,1)
for (taskid = 0 ; taskid < C_ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
int64_t kfirst = TaskList [taskid].kfirst ;
int64_t klast = TaskList [taskid].klast ;
bool fine_task = (klast == -1) ;
int64_t len ;
if (fine_task)
{
// a fine task operates on a slice of a single vector
klast = kfirst ;
len = TaskList [taskid].len ;
}
else
{
// a coarse task operates on one or more whole vectors
len = vlen ;
}
//----------------------------------------------------------------------
// compute all vectors in this task
//----------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// get j, the kth vector of C
//------------------------------------------------------------------
int64_t j = GBh_C (Ch, k) ;
#if ( GB_ADD_PHASE == 1 )
int64_t cjnz = 0 ;
#else
int64_t pC, pC_end ;
if (fine_task)
{
// A fine task computes a slice of C(:,j)
pC = TaskList [taskid ].pC ;
pC_end = TaskList [taskid+1].pC ;
ASSERT (GB_IGET (Cp, k) <= pC) ;
ASSERT (pC <= pC_end) ;
ASSERT (pC_end <= GB_IGET (Cp, k+1)) ;
}
else
{
// The vectors of C are never sliced for a coarse task.
pC = GB_IGET (Cp, k ) ;
pC_end = GB_IGET (Cp, k+1) ;
}
int64_t cjnz = pC_end - pC ;
if (cjnz == 0) continue ;
#endif
//------------------------------------------------------------------
// get A(:,j)
//------------------------------------------------------------------
int64_t pA = -1, pA_end = -1 ;
if (fine_task)
{
// A fine task operates on Ai,Ax [pA...pA_end-1], which is
// a subset of the vector A(:,j)
pA = TaskList [taskid].pA ;
pA_end = TaskList [taskid].pA_end ;
}
else
{
// A coarse task operates on the entire vector A (:,j)
int64_t kA = (C_to_A == NULL) ? j : C_to_A [k] ;
if (kA >= 0)
{
pA = GBp_A (Ap, kA, vlen) ;
pA_end = GBp_A (Ap, kA+1, vlen) ;
}
}
int64_t ajnz = pA_end - pA ; // nnz in A(:,j) for this slice
int64_t pA_start = pA ;
bool adense = (ajnz == len) ;
// get the first and last indices in A(:,j) for this vector
int64_t iA_first = -1, iA_last = -1 ;
if (ajnz > 0)
{
iA_first = GBi_A (Ai, pA, vlen) ;
iA_last = GBi_A (Ai, pA_end-1, vlen) ;
}
//------------------------------------------------------------------
// get B(:,j)
//------------------------------------------------------------------
int64_t pB = -1, pB_end = -1 ;
if (fine_task)
{
// A fine task operates on Bi,Bx [pB...pB_end-1], which is
// a subset of the vector B(:,j)
pB = TaskList [taskid].pB ;
pB_end = TaskList [taskid].pB_end ;
}
else
{
// A coarse task operates on the entire vector B (:,j)
int64_t kB = (C_to_B == NULL) ? j : C_to_B [k] ;
if (kB >= 0)
{
pB = GBp_B (Bp, kB, vlen) ;
pB_end = GBp_B (Bp, kB+1, vlen) ;
}
}
int64_t bjnz = pB_end - pB ; // nnz in B(:,j) for this slice
int64_t pB_start = pB ;
bool bdense = (bjnz == len) ;
// get the first and last indices in B(:,j) for this vector
int64_t iB_first = -1, iB_last = -1 ;
if (bjnz > 0)
{
iB_first = GBi_B (Bi, pB, vlen) ;
iB_last = GBi_B (Bi, pB_end-1, vlen) ;
}
//------------------------------------------------------------------
// C(:,j)<optional mask> = A (:,j) + B (:,j) or subvector
//------------------------------------------------------------------
#ifdef GB_JIT_KERNEL
{
#if GB_NO_MASK
{
#include "template/GB_add_sparse_noM.c"
}
#elif (GB_M_IS_SPARSE || GB_M_IS_HYPER)
{
#include "template/GB_add_sparse_M_sparse.c"
}
#else
{
#include "template/GB_add_sparse_M_bitmap.c"
}
#endif
}
#else
{
if (M == NULL)
{
#include "template/GB_add_sparse_noM.c"
}
else if (M_is_sparse_or_hyper)
{
#include "template/GB_add_sparse_M_sparse.c"
}
else
{
#include "template/GB_add_sparse_M_bitmap.c"
}
}
#endif
//------------------------------------------------------------------
// final count of nnz (C (:,j))
//------------------------------------------------------------------
#if ( GB_ADD_PHASE == 1 )
if (fine_task)
{
TaskList [taskid].pC = cjnz ;
}
else
{
GB_ISET (Cp, k, cjnz) ; // Cp [k] = cjnz ;
}
#endif
}
}
}
|