1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
|
//------------------------------------------------------------------------------
// GB_apply_op: typecast and apply a unary/binary/idxunop operator to an array
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Cx = op (A)
// Cx and A->x may be aliased.
// This function is CSR/CSC agnostic. For positional ops, A is treated as if
// it is in CSC format. The caller has already modified the op if A is in CSR
// format.
#include "apply/GB_apply.h"
#include "binaryop/GB_binop.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_uop__include.h"
#include "FactoryKernels/GB_ew__include.h"
#endif
#define GB_FREE_ALL \
{ \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
}
GrB_Info GB_apply_op // apply a unary op, idxunop, or binop, Cx = op (A)
(
GB_void *Cx, // output array
const GrB_Type ctype, // type of C
const GB_iso_code C_code_iso, // C non-iso, or code to compute C iso value
const GB_Operator op_in, // unary/index-unary/binop to apply
const GrB_Scalar scalar, // scalar to bind to binary operator
bool binop_bind1st, // if true, C=binop(s,A), else C=binop(A,s)
bool flipij, // if true, flip i,j for user idxunop
const GrB_Matrix A, // input matrix
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
GB_Operator op = op_in ;
ASSERT (Cx != NULL) ;
ASSERT_MATRIX_OK (A, "A input for GB_apply_op", GB0) ;
ASSERT (GB_JUMBLED_OK (A)) ; // A can be jumbled
ASSERT (!GB_ZOMBIES (A)) ;
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
ASSERT (GB_IMPLIES (op != NULL, ctype == op->ztype)) ;
ASSERT_SCALAR_OK_OR_NULL (scalar, "scalar for GB_apply_op", GB0) ;
//--------------------------------------------------------------------------
// get A
//--------------------------------------------------------------------------
// A->x is not const since the operator might be applied in-place, if
// C is aliased to C.
GB_void *Ax = (GB_void *) A->x ; // A->x has type A->type
const int8_t *Ab = A->b ; // only if A is bitmap
const GrB_Type Atype = A->type ; // type of A->x
const int64_t anz = GB_nnz_held (A) ; // size of A->x and Cx
#define GB_A_IS_BITMAP (Ab != NULL)
//--------------------------------------------------------------------------
// determine the maximum number of threads to use
//--------------------------------------------------------------------------
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
//--------------------------------------------------------------------------
// get the operator
//--------------------------------------------------------------------------
GB_Opcode opcode ;
bool op_is_unop = false ;
bool op_is_binop = false ;
bool opz64 = false ;
bool opz32 = false ;
if (op != NULL)
{
ASSERT_OP_OK (op, "op for GB_apply_op", GB0) ;
opcode = op->opcode ;
op_is_unop = GB_IS_UNARYOP_CODE (opcode) ;
op_is_binop = GB_IS_BINARYOP_CODE (opcode) ;
ASSERT (!GB_IS_INDEXBINARYOP_CODE (opcode)) ;
opz64 = (op->ztype == GrB_INT64) ;
opz32 = (op->ztype == GrB_INT32) ;
if (GB_IS_BUILTIN_BINOP_CODE_POSITIONAL (opcode))
{
// rename builtin positional binary ops to positional unary ops
GrB_UnaryOp op1 = NULL ;
switch (opcode)
{
case GB_FIRSTI_binop_code : // z = first_i(A(i,j),y) == i
case GB_SECONDI_binop_code : // z = second_i(x,A(i,j)) == i
// rename FIRSTI and SECONDI to POSITIONI
op1 = opz64 ? GxB_POSITIONI_INT64 : GxB_POSITIONI_INT32 ;
break ;
case GB_FIRSTI1_binop_code : // z = first_i1(A(i,j),y) == i+1
case GB_SECONDI1_binop_code : // z = second_i1(x,A(i,j)) == i+1
// rename FIRSTI1 and SECONDI1 to POSITIONI1
op1 = opz64 ? GxB_POSITIONI1_INT64 : GxB_POSITIONI1_INT32 ;
break ;
case GB_FIRSTJ_binop_code : // z = first_j(A(i,j),y) == j
case GB_SECONDJ_binop_code : // z = second_j(x,A(i,j)) == j
// rename FIRSTJ and SECONDJ to POSITIONJ
op1 = opz64 ? GxB_POSITIONJ_INT64 : GxB_POSITIONJ_INT32 ;
break ;
case GB_FIRSTJ1_binop_code : // z = first_j1(A(i,j),y) == j+1
case GB_SECONDJ1_binop_code : // z = second_j1(x,A(i,j)) == j+1
// rename FIRSTJ1 and SECONDJ1 to POSITIONJ1
op1 = opz64 ? GxB_POSITIONJ1_INT64 : GxB_POSITIONJ1_INT32 ;
break ;
default:;
}
ASSERT (op1 != NULL) ;
op = (GB_Operator) op1 ;
ASSERT_OP_OK (op, "revised op for GB_apply_op", GB0) ;
opcode = op->opcode ;
op_is_unop = true ;
op_is_binop = false ;
ASSERT (GB_IS_BUILTIN_UNOP_CODE_POSITIONAL (opcode)) ;
}
}
else
{
// C is iso, with no operator to apply; just call GB_unop_iso below.
ASSERT (C_code_iso == GB_ISO_1 || // C iso value is 1
C_code_iso == GB_ISO_S || // C iso value is the scalar
C_code_iso == GB_ISO_A) ; // C iso value is the iso value of A
opcode = GB_NOP_code ;
}
//--------------------------------------------------------------------------
// determine number of threads to use and slice the A matrix if needed
//--------------------------------------------------------------------------
// int64_t anvec = A->nvec ;
int A_ntasks = 0 ;
int A_nthreads = GB_nthreads (anz, chunk, nthreads_max) ;
info = GrB_NO_VALUE ;
bool depends_on_j = (opcode == GB_USER_idxunop_code) ;
int64_t thunk = 0 ;
if (GB_OPCODE_IS_POSITIONAL (opcode))
{
thunk = GB_positional_offset (opcode, scalar, &depends_on_j) ;
}
//--------------------------------------------------------------------------
// apply the operator
//--------------------------------------------------------------------------
if (GB_OPCODE_IS_POSITIONAL (opcode))
{
//----------------------------------------------------------------------
// apply a positional op
//----------------------------------------------------------------------
ASSERT_OP_OK (op, "positional unop/idxunop: GB_apply_op", GB0) ;
//----------------------------------------------------------------------
// positional op via the CUDA kernel
//----------------------------------------------------------------------
#if defined ( GRAPHBLAS_HAS_CUDA )
if (GB_cuda_apply_unop_branch (ctype, A, op))
{
info = GB_cuda_apply_unop (Cx, ctype, op, flipij, A,
(GB_void *) &thunk) ;
}
#endif
//----------------------------------------------------------------------
// positional op via the CPU factory kernel
//----------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
// get A and C
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;
int64_t avlen = A->vlen ;
if (depends_on_j)
{
// slice the entries for each task
GB_SLICE_MATRIX2 (A, 32) ;
}
//------------------------------------------------------------------
// Cx = positional_op (A)
//------------------------------------------------------------------
if (opz64)
{
//--------------------------------------------------------------
// int64 Cx = positional_op (A)
//--------------------------------------------------------------
int64_t *restrict Cz = (int64_t *) Cx ;
switch (opcode)
{
case GB_POSITIONI_unop_code : // z = pos_i(A(i,j)) == i
case GB_POSITIONI1_unop_code : // z = pos_i1(A(i,j)) == i+1
case GB_ROWINDEX_idxunop_code : // z = i+thunk
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (i + thunk) ;
#include "apply/template/GB_apply_unop_ip_template.c"
break ;
case GB_POSITIONJ_unop_code : // z = pos_j(A(i,j)) == j
case GB_POSITIONJ1_unop_code : // z = pos_j1(A(i,j)) == j+1
case GB_COLINDEX_idxunop_code : // z = j+thunk
#define GB_APPLY_OP(pC,pA) \
Cz [pC] = (j + thunk) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ;
case GB_DIAGINDEX_idxunop_code : // z = (j-(i+thunk)
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (j - (i+thunk)) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ;
case GB_FLIPDIAGINDEX_idxunop_code : // z = (i-(j+thunk)
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (i - (j+thunk)) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ;
default: ;
}
}
else if (opz32)
{
//--------------------------------------------------------------
// int32 Cx = positional_op (A)
//--------------------------------------------------------------
int32_t *restrict Cz = (int32_t *) Cx ;
switch (opcode)
{
case GB_POSITIONI_unop_code : // z = pos_i(A(i,j)) == i
case GB_POSITIONI1_unop_code : // z = pos_i1(A(i,j)) == i+1
case GB_ROWINDEX_idxunop_code : // z = i+thunk
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (int32_t) (i + thunk) ;
#include "apply/template/GB_apply_unop_ip_template.c"
break ;
case GB_POSITIONJ_unop_code : // z = pos_j(A(i,j)) == j
case GB_POSITIONJ1_unop_code : // z = pos_j1(A(i,j)) == j+1
case GB_COLINDEX_idxunop_code : // z = j+thunk
#define GB_APPLY_OP(pC,pA) \
Cz [pC] = (int32_t) (j + thunk) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ;
case GB_DIAGINDEX_idxunop_code : // z = (j-(i+thunk)
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (int32_t) (j - (i+thunk)) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ;
case GB_FLIPDIAGINDEX_idxunop_code : // z = (i-(j+thunk)
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (int32_t) (i - (j+thunk)) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ;
default: ;
}
}
else
{
//--------------------------------------------------------------
// bool Cx = positional_op (A)
//--------------------------------------------------------------
ASSERT (op->ztype == GrB_BOOL) ;
bool *restrict Cz = (bool *) Cx ;
switch (opcode)
{
case GB_TRIL_idxunop_code : // z = (j <= (i+thunk))
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (j <= (i + thunk)) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ; ;
case GB_TRIU_idxunop_code : // z = (j >= (i+thunk))
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (j >= (i + thunk)) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ; ;
case GB_DIAG_idxunop_code : // z = (j == (i+thunk))
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (j == (i + thunk)) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ; ;
case GB_OFFDIAG_idxunop_code : // z = (j != (i+thunk))
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (j != (i + thunk)) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ; ;
case GB_COLLE_idxunop_code : // z = (j <= thunk)
#define GB_APPLY_OP(pC,pA) \
Cz [pC] = (j <= thunk) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ; ;
case GB_COLGT_idxunop_code : // z = (j > thunk)
#define GB_APPLY_OP(pC,pA) \
Cz [pC] = (j > thunk) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
break ; ;
case GB_ROWLE_idxunop_code : // z = (i <= thunk)
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (i <= thunk) ;
#include "apply/template/GB_apply_unop_ip_template.c"
break ; ;
case GB_ROWGT_idxunop_code : // z = (i > thunk)
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
Cz [pC] = (i > thunk) ;
#include "apply/template/GB_apply_unop_ip_template.c"
break ; ;
default: ;
}
}
info = GrB_SUCCESS ;
}
}
else if (C_code_iso != GB_NON_ISO)
{
//----------------------------------------------------------------------
// via the iso kernel, in O(1) time
//----------------------------------------------------------------------
GBURBLE ("(iso apply) ") ;
ASSERT_MATRIX_OK (A, "A passing to GB_unop_iso", GB0) ;
if (anz > 0)
{
// Cx [0] = unop (A), binop (scalar,A), or binop (A,scalar)
GB_unop_iso (Cx, ctype, C_code_iso, op, A, scalar) ;
}
info = GrB_SUCCESS ;
}
else if (op_is_unop)
{
//----------------------------------------------------------------------
// apply a unary op
//----------------------------------------------------------------------
ASSERT_OP_OK (op, "unop for GB_apply_op", GB0) ;
ASSERT (!A->iso) ;
//----------------------------------------------------------------------
// unary op via the CUDA kernel
//----------------------------------------------------------------------
#if defined ( GRAPHBLAS_HAS_CUDA )
if (GB_cuda_apply_unop_branch (ctype, A, op))
{
info = GB_cuda_apply_unop (Cx, ctype, op, flipij, A, NULL) ;
}
#endif
//----------------------------------------------------------------------
// unary op via the factory kernel
//----------------------------------------------------------------------
#ifndef GBCOMPACT
if (info == GrB_NO_VALUE)
{
GB_IF_FACTORY_KERNELS_ENABLED
{
if (Atype == op->xtype || opcode == GB_IDENTITY_unop_code)
{
// The switch factory is used if the op is IDENTITY, or if
// no typecasting. IDENTITY operator can do arbitrary
// typecasting (it is not used if no typecasting is done).
//----------------------------------------------------------
// define the worker for the switch factory
//----------------------------------------------------------
#define GB_uop_apply(unop,zname,aname) \
GB (_uop_apply_ ## unop ## zname ## aname)
#define GB_WORKER(unop,zname,ztype,aname,atype) \
{ \
info = GB_uop_apply (unop,zname,aname) (Cx, Ax, Ab, \
anz, A_nthreads) ; \
} \
break ;
//----------------------------------------------------------
// launch the switch factory
//----------------------------------------------------------
#include "apply/factory/GB_unop_factory.c"
}
}
}
#endif
//----------------------------------------------------------------------
// unary op via the JIT or PreJIT kernel
//----------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_apply_unop_jit (Cx, ctype, op, flipij, A,
NULL, NULL, 0, A_nthreads) ;
}
//----------------------------------------------------------------------
// unary op via the generic kernel
//----------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
GB_BURBLE_N (anz, "(generic unop apply: %s) ", op->name) ;
size_t asize = Atype->size ;
size_t zsize = op->ztype->size ;
size_t xsize = op->xtype->size ;
GB_Type_code acode = Atype->code ;
GB_Type_code xcode = op->xtype->code ;
GB_cast_function cast_A_to_X = GB_cast_factory (xcode, acode) ;
GxB_unary_function fop = op->unop_function ;
#define GB_APPLY_OP(pC,pA) \
/* xwork = (xtype) Ax [pA] */ \
GB_void xwork [GB_VLA(xsize)] ; \
cast_A_to_X (xwork, Ax +(pA)*asize, asize) ; \
/* Cx [pC] = fop (xwork) */ \
fop (Cx +((pC)*zsize), xwork) ;
#include "apply/template/GB_apply_unop_ip_template.c"
info = GrB_SUCCESS ;
}
}
else if (op_is_binop)
{
//----------------------------------------------------------------------
// apply a binary operator (bound to a scalar)
//----------------------------------------------------------------------
ASSERT_OP_OK (op, "standard binop for GB_apply_op", GB0) ;
ASSERT_SCALAR_OK (scalar, "scalar for GB_apply_op", GB0) ;
GB_Type_code xcode, ycode, zcode ;
ASSERT (opcode != GB_FIRST_binop_code) ;
ASSERT (opcode != GB_SECOND_binop_code) ;
ASSERT (opcode != GB_PAIR_binop_code) ;
ASSERT (opcode != GB_ANY_binop_code) ;
ASSERT (opcode != GB_USER_idxbinop_code) ;
size_t asize = Atype->size ;
size_t ssize = scalar->type->size ;
size_t zsize = op->ztype->size ;
size_t xsize = op->xtype->size ;
size_t ysize = op->ytype->size ;
GB_Type_code scalar_code = scalar->type->code ;
xcode = op->xtype->code ;
ycode = op->ytype->code ;
// typecast the scalar to the operator input
size_t ssize_cast ;
GB_Type_code scalar_code_cast ;
if (binop_bind1st)
{
ssize_cast = xsize ;
scalar_code_cast = xcode ;
}
else
{
ssize_cast = ysize ;
scalar_code_cast = ycode ;
}
GB_void swork [GB_VLA(ssize_cast)] ;
GB_void *scalarx = (GB_void *) scalar->x ;
if (scalar_code_cast != scalar_code)
{
// typecast the scalar to the operator input, in swork
GB_cast_function cast_s =
GB_cast_factory (scalar_code_cast, scalar_code) ;
cast_s (swork, scalar->x, ssize) ;
scalarx = swork ;
}
if (binop_bind1st)
{
//------------------------------------------------------------------
// binary op (bind 1st) via the CUDA kernel
//------------------------------------------------------------------
#if defined ( GRAPHBLAS_HAS_CUDA )
if (GB_cuda_apply_binop_branch (ctype, (GrB_BinaryOp) op, A))
{
info = GB_cuda_apply_binop (Cx, ctype, (GrB_BinaryOp) op, A,
scalarx, true) ;
}
#endif
//------------------------------------------------------------------
// binary op (bind 1st) via the CPU factory kernel
//------------------------------------------------------------------
#ifndef GBCOMPACT
if (info == GrB_NO_VALUE)
{
GB_IF_FACTORY_KERNELS_ENABLED
{
if (GB_binop_builtin (op->xtype, false, Atype, false,
(GrB_BinaryOp) op, false, &opcode, &xcode, &ycode,
&zcode))
{
//------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------
#define GB_bind1st(binop,xname) \
GB (_bind1st_ ## binop ## xname)
#define GB_BINOP_WORKER(binop,xname) \
{ \
info = GB_bind1st (binop, xname) (Cx, scalarx, Ax, \
Ab, anz, A_nthreads) ; \
} \
break ;
//------------------------------------------------------
// launch the switch factory
//------------------------------------------------------
#define GB_NO_FIRST
#define GB_NO_SECOND
#define GB_NO_PAIR
#include "binaryop/factory/GB_binop_factory.c"
}
}
}
#endif
//------------------------------------------------------------------
// binary op (bind 1st) via the JIT or PreJIT kernel
//------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_apply_bind1st_jit (Cx, ctype,
(GrB_BinaryOp) op, scalarx, A, A_nthreads) ;
}
}
else
{
//------------------------------------------------------------------
// binary op (bind 2nd) via the CUDA kernel
//------------------------------------------------------------------
#if defined ( GRAPHBLAS_HAS_CUDA )
if (GB_cuda_apply_binop_branch (ctype, (GrB_BinaryOp) op, A))
{
info = GB_cuda_apply_binop (Cx, ctype, (GrB_BinaryOp) op, A,
scalarx, false) ;
}
#endif
//------------------------------------------------------------------
// binary op (bind 2nd) via the CPU factory kernel
//------------------------------------------------------------------
#ifndef GBCOMPACT
if (info == GrB_NO_VALUE)
{
GB_IF_FACTORY_KERNELS_ENABLED
{
if (GB_binop_builtin (Atype, false, op->ytype, false,
(GrB_BinaryOp) op, false, &opcode, &xcode, &ycode,
&zcode))
{
//------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------
#define GB_bind2nd(binop,xname) \
GB (_bind2nd_ ## binop ## xname)
#undef GB_BINOP_WORKER
#define GB_BINOP_WORKER(binop,xname) \
{ \
info = GB_bind2nd (binop, xname) (Cx, Ax, scalarx,\
Ab, anz, A_nthreads) ; \
} \
break ;
//------------------------------------------------------
// launch the switch factory
//------------------------------------------------------
#define GB_NO_FIRST
#define GB_NO_SECOND
#define GB_NO_PAIR
#include "binaryop/factory/GB_binop_factory.c"
}
}
}
#endif
//------------------------------------------------------------------
// binary op (bind 2nd) via the JIT or PreJIT kernel
//------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_apply_bind2nd_jit (Cx, ctype,
(GrB_BinaryOp) op, A, scalarx, A_nthreads) ;
}
}
//----------------------------------------------------------------------
// binary op (bind 1st or 2nd) via the generic kernel
//----------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
GB_BURBLE_N (anz, "(generic binop apply: %s) ", op->name) ;
GB_Type_code acode = Atype->code ;
GxB_binary_function fop = op->binop_function ;
ASSERT (fop != NULL) ;
ASSERT (!A->iso) ;
if (binop_bind1st)
{
// Cx = binop (scalar,Ax) with bind1st
GB_cast_function cast_A_to_Y = GB_cast_factory (ycode, acode) ;
#define GB_APPLY_OP(pC,pA) \
/* ywork = (ytype) Ax [pA] */ \
GB_void ywork [GB_VLA(ysize)] ; \
cast_A_to_Y (ywork, Ax +(pA)*asize, asize) ; \
/* Cx [pC] = fop (scalarx, ywork) */ \
fop (Cx +((pC)*zsize), scalarx, ywork) ;
#include "apply/template/GB_apply_unop_ip_template.c"
}
else
{
// Cx = binop (Ax,scalar) with bind2nd
GB_cast_function cast_A_to_X = GB_cast_factory (xcode, acode) ;
#define GB_APPLY_OP(pC,pA) \
/* xwork = (xtype) Ax [pA] */ \
GB_void xwork [GB_VLA(xsize)] ; \
cast_A_to_X (xwork, Ax +(pA)*asize, asize) ; \
/* Cx [pC] = fop (xwork, scalarx) */ \
fop (Cx +((pC)*zsize), xwork, scalarx) ;
#include "apply/template/GB_apply_unop_ip_template.c"
}
info = GrB_SUCCESS ;
}
}
else
{
//----------------------------------------------------------------------
// apply a user-defined index_unary op
//----------------------------------------------------------------------
// All valued GrB_IndexUnaryOps (GrB_VALUE*) have already been
// renamed to their corresponding binary op (GrB_VALUEEQ_FP32
// became GrB_EQ_FP32, for example). The only remaining index
// unary ops are positional, and user-defined. Positional ops have
// been handled above, so only user-defined index unary ops are
// left.
ASSERT (opcode == GB_USER_idxunop_code) ;
size_t ssize = scalar->type->size ;
size_t ysize = op->ytype->size ;
GB_Type_code scalar_code = scalar->type->code ;
GB_Type_code ycode = op->ytype->code ;
GB_void ywork [GB_VLA(ysize)] ;
GB_void *ythunk = (GB_void *) scalar->x ;
if (ycode != scalar_code)
{
// typecast the scalar to the operator input, in ywork
GB_cast_function cast_s = GB_cast_factory (ycode, scalar_code) ;
cast_s (ywork, scalar->x, ssize) ;
ythunk = ywork ;
}
//----------------------------------------------------------------------
// user-defined index-unary op via the CUDA kernel
//----------------------------------------------------------------------
#if defined ( GRAPHBLAS_HAS_CUDA )
if (GB_cuda_apply_unop_branch (ctype, A, op))
{
info = GB_cuda_apply_unop (Cx, ctype, op, flipij, A, ythunk) ;
}
#endif
//----------------------------------------------------------------------
// user-defined index-unary op via the JIT or PreJIT kernel
//----------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
if (depends_on_j)
{
// slice the entries for each task
GB_SLICE_MATRIX2 (A, 32) ;
}
info = GB_apply_unop_jit (Cx, ctype, op, flipij, A,
ythunk, A_ek_slicing, A_ntasks, A_nthreads) ;
}
//----------------------------------------------------------------------
// user-defined index-unary op via the generic kernel
//----------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
GB_BURBLE_N (anz, "(generic apply: user-defined idxunop) ") ;
// get A and C
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;
int64_t avlen = A->vlen ;
GB_Type_code acode = Atype->code ;
// A can be iso-valued, but C is not
bool A_iso = A->iso ;
ASSERT (C_code_iso == GB_NON_ISO) ;
if (A_iso)
{
GB_BURBLE_N (anz, "(A iso; C non-iso) ") ;
}
GxB_index_unary_function fop = op->idxunop_function ;
size_t asize = Atype->size ;
size_t zsize = op->ztype->size ;
size_t xsize = op->xtype->size ;
GB_Type_code xcode = op->xtype->code ;
GB_cast_function cast_A_to_X = GB_cast_factory (xcode, acode) ;
// Cx [pC] = op (Ax [A_iso ? 0 : pA], i, j, ythunk)
#define GB_APPLY_OP(pC,pA) \
int64_t i = GBi_A (Ai, pA, avlen) ; \
GB_void xwork [GB_VLA(xsize)] ; \
cast_A_to_X (xwork, Ax +(A_iso ? 0 : (pA))*asize, asize) ; \
fop (Cx +((pC)*zsize), xwork, \
flipij ? j : i, flipij ? i : j, ythunk) ;
#include "apply/template/GB_apply_unop_ijp_template.c"
info = GrB_SUCCESS ;
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
return (info) ;
}
|