File: GB_subassign_IxJ_slice.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (199 lines) | stat: -rw-r--r-- 7,811 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
//------------------------------------------------------------------------------
// GB_subassign_IxJ_slice: slice IxJ for subassign
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// Slice IxJ for a scalar assignment method and for bitmap assignments.

// Construct a set of tasks to compute C(I,J)<...> = x or += x, for a subassign
// method that performs scalar assignment, based on slicing the Cartesian
// product IxJ.  If enough tasks can be constructed by just slicing J, then all
// tasks are coarse.  Each coarse tasks computes all of C(I,J(kfirst:klast-1)),
// for its range of indices kfirst:klast-1, inclusive.

// Otherwise, if not enough coarse tasks can be constructed, then all tasks are
// fine.  Each fine task computes a slice of C(I(iA_start:iA_end-1), jC) for a
// single index jC = J(kfirst).

        //  =====================       ==============
        //  M   cmp rpl acc A   S       method: action
        //  =====================       ==============
        //  -   -   -   -   -   S       01:  C(I,J) = x, with S
        //  -   -   -   +   -   S       03:  C(I,J) += x, with S
        //  M   c   -   -   -   S       13:  C(I,J)<!M> = x, with S
        //  M   c   -   +   -   S       15:  C(I,J)<!M> += x, with S
        //  M   c   r   -   -   S       17:  C(I,J)<!M,repl> = x, with S
        //  M   c   r   +   -   S       19:  C(I,J)<!M,repl> += x, with S

// There are 10 methods that perform scalar assignment: the 6 listed above, and
// Methods 05, 07, 09, and 11.  The latter 4 methods do not need to iterate
// over the entire IxJ space, because of the mask M:

        //  M   -   -   -   -   -       05:  C(I,J)<M> = x
        //  M   -   -   +   -   -       07:  C(I,J)<M> += x
        //  M   -   r   -   -   S       09:  C(I,J)<M,repl> = x, with S
        //  M   -   r   +   -   S       11:  C(I,J)<M,repl> += x, with S

// As a result, they do not use GB_subassign_IxJ_slice to define their tasks.
// Instead, Methods 05 and 07 slice the matrix M, and Methods 09 and 11 slice
// the matrix addition M+S.

#include "assign/GB_subassign_methods.h"

#undef  GB_FREE_ALL
#define GB_FREE_ALL                             \
{                                               \
    GB_FREE_MEMORY (&TaskList, TaskList_size) ;   \
}

//------------------------------------------------------------------------------
// GB_subassign_IxJ_slice
//------------------------------------------------------------------------------

#if 0
GrB_Info GB_subassign_IxJ_slice
(
    // output:
    GB_task_struct **p_TaskList,    // array of structs
    size_t *p_TaskList_size,        // size of TaskList
    int *p_ntasks,                  // # of tasks constructed
    int *p_nthreads,                // # of threads to use
    // input:
    const int64_t nI,
    const int64_t nJ,
    GB_Werk Werk
)
#endif

GB_CALLBACK_SUBASSIGN_IXJ_SLICE_PROTO (GB_subassign_IxJ_slice)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT (p_TaskList != NULL) ;
    ASSERT (p_TaskList_size != NULL) ;
    ASSERT (p_ntasks != NULL) ;
    ASSERT (p_nthreads != NULL) ;

    (*p_TaskList  ) = NULL ;
    (*p_TaskList_size) = 0 ;
    (*p_ntasks    ) = 0 ;
    (*p_nthreads  ) = 1 ;
    int ntasks, max_ntasks = 0, nthreads ;
    GB_task_struct *TaskList = NULL ; size_t TaskList_size = 0 ;

    //--------------------------------------------------------------------------
    // determine # of threads to use
    //--------------------------------------------------------------------------

    int nthreads_max = GB_Context_nthreads_max ( ) ;
    double chunk = GB_Context_chunk ( ) ;

    //--------------------------------------------------------------------------
    // allocate the initial TaskList
    //--------------------------------------------------------------------------

    double work = ((double) nI) * ((double) nJ) ;
    nthreads = GB_nthreads (work, chunk, nthreads_max) ;
    int ntasks0 = (nthreads == 1) ? 1 : (32 * nthreads) ;
    GB_REALLOC_TASK_WORK (TaskList, ntasks0, max_ntasks) ;

    //--------------------------------------------------------------------------
    // check for quick return for a single task
    //--------------------------------------------------------------------------

    if (nJ == 0 || ntasks0 == 1)
    { 
        // construct a single coarse task that does all the work
        TaskList [0].kfirst = 0 ;
        TaskList [0].klast  = nJ-1 ;
        (*p_TaskList  ) = TaskList ;
        (*p_TaskList_size) = TaskList_size ;
        (*p_ntasks    ) = (nJ == 0) ? 0 : 1 ;
        (*p_nthreads  ) = 1 ;
        return (GrB_SUCCESS) ;
    }

    //--------------------------------------------------------------------------
    // construct the tasks: all fine or all coarse
    //--------------------------------------------------------------------------

    // The desired number of tasks is ntasks0.  If this is less than or equal
    // to |J|, then all tasks can be coarse, and each coarse task handles one
    // or more indices in J.  Otherise, multiple fine tasks are constructed for
    // each index in J.

    if (ntasks0 <= nJ)
    {

        //----------------------------------------------------------------------
        // all coarse tasks: slice just J
        //----------------------------------------------------------------------

        ntasks = ntasks0 ;
        for (int taskid = 0 ; taskid < ntasks ; taskid++)
        { 
            // the coarse task computes C (I, J (j:jlast-1))
            int64_t j, jlast ;
            GB_PARTITION (j, jlast, nJ, taskid, ntasks) ;
            ASSERT (j <= jlast) ;
            ASSERT (jlast <= nJ) ;
            TaskList [taskid].kfirst = j ;
            TaskList [taskid].klast  = jlast - 1 ;
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // all fine tasks: slice both I and J
        //----------------------------------------------------------------------

        // create at least 2 fine tasks per index in J
        int nI_fine_tasks = ntasks0 / nJ ;
        nI_fine_tasks = GB_IMAX (nI_fine_tasks, 2) ;
        ntasks = 0 ;

        GB_REALLOC_TASK_WORK (TaskList, nJ * nI_fine_tasks, max_ntasks) ;

        //----------------------------------------------------------------------
        // construct fine tasks for index j
        //----------------------------------------------------------------------

        for (int64_t j = 0 ; j < nJ ; j++)
        {
            // create nI_fine_tasks for each index in J
            for (int t = 0 ; t < nI_fine_tasks ; t++)
            { 
                // this fine task computes C (I (iA_start:iA_end-1), jC)
                int64_t iA_start, iA_end ;
                GB_PARTITION (iA_start, iA_end, nI, t, nI_fine_tasks) ;
                TaskList [ntasks].kfirst = j ;
                TaskList [ntasks].klast  = -1 ;
                TaskList [ntasks].pA     = iA_start ;
                TaskList [ntasks].pA_end = iA_end ;
                ntasks++ ;
            }
        }
    }

    ASSERT (ntasks <= max_ntasks) ;

    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------

    (*p_TaskList  ) = TaskList ;
    (*p_TaskList_size) = TaskList_size ;
    (*p_ntasks    ) = ntasks ;
    (*p_nthreads  ) = nthreads ;
    return (GrB_SUCCESS) ;
}