File: GB_subassign_symbolic.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (167 lines) | stat: -rw-r--r-- 7,167 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
//------------------------------------------------------------------------------
// GB_subassign_symbolic: S = C(I,J)
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#include "assign/GB_subassign_methods.h"
#include "extract/GB_subref.h"
#define GB_GENERIC
#include "assign/include/GB_assign_shared_definitions.h"
#include "hyper/factory/GB_lookup_debug.h"

#undef  GB_FREE_ALL
#define GB_FREE_ALL GB_phybix_free (S) ;

GrB_Info GB_subassign_symbolic  // S = C(I,J), extracting pattern not values
(
    // output
    GrB_Matrix S,           // S = symbolic(C(I,J)), static header
    // inputs, not modified:
    const GrB_Matrix C,     // matrix to extract the pattern of
    const void *I,          // I index list
    const bool I_is_32,
    const int64_t ni,       // length of I, or special
    const void *J,          // J index list
    const bool J_is_32,
    const int64_t nj,       // length of J, or special
    const bool S_must_not_be_jumbled,   // if true, S cannot be jumbled
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT (!GB_IS_BITMAP (C)) ;    // the caller cannot tolerate C bitmap
    ASSERT (S != NULL && (S->header_size == 0 || GBNSTATIC)) ;

    //--------------------------------------------------------------------------
    // extract the pattern: S = C(I,J) for S_Extraction method, and quick mask
    //--------------------------------------------------------------------------

    // S is a matrix with int64_t type.  Its "values" are not numerical, but
    // indices into C.  For example, suppose 100 = I [5] and 200 = J [7].  Then
    // S(5,7) is the entry C(I(5),J(7)), and the value of S(5,7) is the
    // position in C that holds that particular entry C(100,200):
    // pC = S->x [...] gives the location of the value C->x [pC] and row index
    // 100 = C->i [pC], and pC will be between C->p [200] ... C->p [200+1]-1
    // if C is non-hypersparse.  If C is hyperparse then pC will be still
    // reside inside the vector jC, in the range C->p [k] ... C->p [k+1]-1,
    // if jC is the kth non-empty vector in the hyperlist of C.

    //--------------------------------------------------------------------------
    // extract symbolic structure S=C(I,J)
    //--------------------------------------------------------------------------

    // FUTURE::: if whole_C_matrix is true, then C(:,:) = ... and S == C,
    // except that S is zombie-free and not modified, but C collects zombies.

    // FUTURE:: the properties of I and J are already known, and thus do
    // not need to be recomputed by GB_subref.

    // S and C have the same CSR/CSC format.  S can be jumbled.  It is in
    // in the same hypersparse form as C (unless S is empty, in which case
    // it is always returned as hypersparse). This also checks I and J.
    // S is not iso, even if C is iso.  S can be sparse, hypersparse, or full
    // (not bitmap).
    GB_OK (GB_subref (S, false, C->is_csc, C, I, I_is_32, ni, J, J_is_32, nj,
        /* symbolic: */ true, Werk)) ;
    ASSERT (GB_JUMBLED_OK (S)) ;    // GB_subref can return S as jumbled
    ASSERT (!GB_ZOMBIES (S)) ;
    ASSERT (!GB_PENDING (S)) ;

    //--------------------------------------------------------------------------
    // sort S and compute S->Y if requested
    //--------------------------------------------------------------------------

    if (S_must_not_be_jumbled)
    { 
        GB_MATRIX_WAIT (S) ; // but the caller requires S unjumbled
        ASSERT (!GB_JUMBLED (S)) ;
        GB_OK (GB_hyper_hash_build (S, Werk)) ;    // construct S->Y
    }

    //--------------------------------------------------------------------------
    // check the result of S=C(I,J)
    //--------------------------------------------------------------------------

    #ifdef GB_DEBUG
    ASSERT_MATRIX_OK (C, "C for subref extraction", GB0) ;
    ASSERT_MATRIX_OK (S, "S for subref extraction", GB0) ;

    // since C is not bitmap, neither is S
    ASSERT (!GB_IS_BITMAP (S)) ;

    // GB_subref sorts its input matrix, so C is no longer jumbled
    ASSERT (!GB_JUMBLED (C)) ;

    // this body of code explains what S contains.
    // S is nI-by-nJ where nI = length (I) and nJ = length (J)

    // get I and J
    int64_t nI, Icolon [3], nJ, Jcolon [3] ;
    int Ikind, Jkind ;
    GB_ijlength (I, I_is_32, ni, C->vlen, &nI, &Ikind, Icolon) ;
    GB_ijlength (J, J_is_32, nj, C->vdim, &nJ, &Jkind, Jcolon) ;
    GB_IDECL (I, const, u) ; GB_IPTR (I, I_is_32) ;
    GB_IDECL (J, const, u) ; GB_IPTR (J, J_is_32) ;

    // get S
    ASSERT (S->type == GrB_UINT32 || S->type == GrB_UINT64) ;
    const bool Sx_is_32 = (S->type->code == GB_UINT32_code) ;
    GB_Sp_DECLARE (Sp, const) ; GB_Sp_PTR (Sp, S) ;
    GB_Sh_DECLARE (Sh, const) ; GB_Sh_PTR (Sh, S) ;
    GB_Si_DECLARE (Si, const) ; GB_Si_PTR (Si, S) ;
    GB_MDECL (Sx, const, u) ;
    Sx = S->x ;
    GB_IPTR (Sx, Sx_is_32) ;

    // get C
    GB_Ci_DECLARE (Ci, const) ; GB_Ci_PTR (Ci, C) ;

    // for each vector of S
    for (int64_t k = 0 ; k < S->nvec ; k++)
    {
        // prepare to iterate over the entries of vector S(:,jnew)
        int64_t jnew = GBh_S (Sh, k) ;
        int64_t pS_start = GBp_S (Sp, k, S->vlen) ;
        int64_t pS_end   = GBp_S (Sp, k+1, S->vlen) ;
        // S (inew,jnew) corresponds to C (iC, jC) ;
        // jC = J [j] ; or J is a colon expression
        int64_t jC = GB_IJLIST (J, jnew, Jkind, Jcolon) ;
        for (int64_t pS = pS_start ; pS < pS_end ; pS++)
        {
            // S (inew,jnew) is a pointer back into C (I(inew), J(jnew))
            int64_t inew = GBi_S (Si, pS, S->vlen) ;
            ASSERT (inew >= 0 && inew < nI) ;
            // iC = I [iA] ; or I is a colon expression
            int64_t iC = GB_IJLIST (I, inew, Ikind, Icolon) ;
            int64_t p = GB_IGET (Sx, pS) ;
            ASSERT (p >= 0 && p < GB_nnz (C)) ;
            int64_t pC_start, pC_end, pleft = 0, pright = C->nvec-1 ;
            bool found = GB_lookup_debug (C->p_is_32, C->j_is_32, C->h != NULL,
                C->h, C->p, C->vlen, &pleft, pright, jC, &pC_start, &pC_end) ;
            ASSERT (found) ;
            // If iC == I [inew] and jC == J [jnew], (or the equivaleent
            // for GB_ALL, GB_RANGE, GB_STRIDE) then A(inew,jnew) will be
            // assigned to C(iC,jC), and p = S(inew,jnew) gives the pointer
            // into C to where the entry (C(iC,jC) appears in C:
            ASSERT (pC_start <= p && p < pC_end) ;
            ASSERT (iC == GB_UNZOMBIE (GBi_C (Ci, p, C->vlen))) ;
        }
    }
    #endif

    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------

    return (GrB_SUCCESS) ;
}