1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
|
//------------------------------------------------------------------------------
// GB_assign_shared_definitions.h: definitions for GB_subassign kernels
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// macros for the construction of the GB_subassign kernels
#include "include/GB_kernel_shared_definitions.h"
#include "include/GB_cumsum1.h"
#include "include/GB_unused.h"
//==============================================================================
// definitions redefined as needed
//==============================================================================
#ifndef GB_FREE_WORKSPACE
#define GB_FREE_WORKSPACE ;
#endif
#undef GB_FREE_S
#ifdef GB_GENERIC
// generic kernels are inside their calling method, so they must free S
#define GB_FREE_S GB_Matrix_free (&S)
#else
// JIT, PreJIT, and factory kernels are passed S already construct
#define GB_FREE_S
#endif
#undef GB_FREE_ALL
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_WERK_POP (Npending, int64_t) ; \
GB_FREE_MEMORY (&TaskList, TaskList_size) ; \
GB_FREE_MEMORY (&Zh, Zh_size) ; \
GB_FREE_MEMORY (&Z_to_X, Z_to_X_size) ; \
GB_FREE_MEMORY (&Z_to_S, Z_to_S_size) ; \
GB_FREE_MEMORY (&Z_to_A, Z_to_A_size) ; \
GB_FREE_MEMORY (&Z_to_M, Z_to_M_size) ; \
GB_FREE_S ; \
}
//==============================================================================
// definitions done just once
//==============================================================================
#ifndef GB_SUBASSIGN_SHARED_DEFINITIONS_H
#define GB_SUBASSIGN_SHARED_DEFINITIONS_H
//------------------------------------------------------------------------------
// matrix types and other properties
//------------------------------------------------------------------------------
// The JIT/PreJIT kernels and FactoryKernels define the GB_*_TYPE macros as
// real types. If not yet defined, the generic kernels use GB_void.
#ifndef GB_C_TYPE
#define GB_C_TYPE GB_void
#endif
#ifndef GB_A_TYPE
#define GB_A_TYPE GB_void
#endif
#ifndef GB_M_TYPE
#define GB_M_TYPE GB_void
#endif
#ifdef GB_GENERIC
#define GB_CAST_FUNCTION(f,zcode,xcode) \
const GB_cast_function f = GB_cast_factory (zcode, xcode) ;
#else
#define GB_CAST_FUNCTION(f,zcode,xcode)
#endif
#ifndef GB_SCALAR_ASSIGN
// currently needed for bitmap methods only
#define GB_SCALAR_ASSIGN (A == NULL)
#endif
#ifndef GB_ASSIGN_KIND
#define GB_ASSIGN_KIND assign_kind
#endif
#ifndef GB_I_KIND
#define GB_I_KIND Ikind
#endif
#ifndef GB_J_KIND
#define GB_J_KIND Jkind
#endif
#ifndef GB_MASK_COMP
#define GB_MASK_COMP Mask_comp
#endif
#ifndef GB_MASK_STRUCT
#define GB_MASK_STRUCT Mask_struct
#endif
#ifndef GB_C_IS_BITMAP
#define GB_C_IS_BITMAP C_is_bitmap
#endif
#ifndef GB_C_IS_FULL
#define GB_C_IS_FULL C_is_full
#endif
#ifndef GB_C_IS_SPARSE
#define GB_C_IS_SPARSE C_is_sparse
#endif
#ifndef GB_C_IS_HYPER
#define GB_C_IS_HYPER C_is_hyper
#endif
#ifndef GB_C_ISO
#define GB_C_ISO C_iso
#endif
#ifndef GB_Cp_IS_32
#define GB_Cp_IS_32 Cp_is_32
#endif
#ifndef GB_Cj_IS_32
#define GB_Cj_IS_32 Cj_is_32
#endif
#ifndef GB_Ci_IS_32
#define GB_Ci_IS_32 Ci_is_32
#endif
#ifndef GB_M_IS_BITMAP
#define GB_M_IS_BITMAP M_is_bitmap
#endif
#ifndef GB_M_IS_FULL
#define GB_M_IS_FULL M_is_full
#endif
#ifndef GB_M_IS_SPARSE
#define GB_M_IS_SPARSE M_is_sparse
#endif
#ifndef GB_M_IS_HYPER
#define GB_M_IS_HYPER M_is_hyper
#endif
#ifndef GB_Mp_IS_32
#define GB_Mp_IS_32 Mp_is_32
#endif
#ifndef GB_Mj_IS_32
#define GB_Mj_IS_32 Mj_is_32
#endif
#ifndef GB_Mi_IS_32
#define GB_Mi_IS_32 Mi_is_32
#endif
#ifndef GB_A_IS_BITMAP
#define GB_A_IS_BITMAP A_is_bitmap
#endif
#ifndef GB_A_IS_FULL
#define GB_A_IS_FULL A_is_full
#endif
#ifndef GB_A_IS_SPARSE
#define GB_A_IS_SPARSE A_is_sparse
#endif
#ifndef GB_A_IS_HYPER
#define GB_A_IS_HYPER A_is_hyper
#endif
#ifndef GB_A_ISO
#define GB_A_ISO A_iso
#endif
#ifndef GB_Ap_IS_32
#define GB_Ap_IS_32 Ap_is_32
#endif
#ifndef GB_Aj_IS_32
#define GB_Aj_IS_32 Aj_is_32
#endif
#ifndef GB_Ai_IS_32
#define GB_Ai_IS_32 Ai_is_32
#endif
#ifndef GB_S_IS_BITMAP
#define GB_S_IS_BITMAP S_is_bitmap
#endif
#ifndef GB_S_IS_FULL
#define GB_S_IS_FULL S_is_full
#endif
#ifndef GB_S_IS_SPARSE
#define GB_S_IS_SPARSE S_is_sparse
#endif
#ifndef GB_S_IS_HYPER
#define GB_S_IS_HYPER S_is_hyper
#endif
#ifndef GB_Sp_IS_32
#define GB_Sp_IS_32 Sp_is_32
#endif
#ifndef GB_Sj_IS_32
#define GB_Sj_IS_32 Sj_is_32
#endif
#ifndef GB_Si_IS_32
#define GB_Si_IS_32 Si_is_32
#endif
#ifndef GB_I_IS_32
#define GB_I_IS_32 I_is_32
#endif
#ifndef GB_J_IS_32
#define GB_J_IS_32 J_is_32
#endif
//------------------------------------------------------------------------------
// GB_EMPTY_TASKLIST: declare an empty TaskList
//------------------------------------------------------------------------------
#define GB_EMPTY_TASKLIST \
GrB_Info info ; \
int taskid, ntasks = 0, nthreads = 0 ; \
GB_task_struct *TaskList = NULL ; size_t TaskList_size = 0 ; \
GB_WERK_DECLARE (Npending, int64_t) ; \
GB_MDECL (Zh, , u) ; size_t Zh_size = 0 ; \
int64_t *restrict Z_to_X = NULL ; size_t Z_to_X_size = 0 ; \
int64_t *restrict Z_to_S = NULL ; size_t Z_to_S_size = 0 ; \
int64_t *restrict Z_to_A = NULL ; size_t Z_to_A_size = 0 ; \
int64_t *restrict Z_to_M = NULL ; size_t Z_to_M_size = 0 ;
//------------------------------------------------------------------------------
// GB_GET_C: get the C matrix (cannot be bitmap)
//------------------------------------------------------------------------------
// C cannot be aliased with M or A.
#define GB_GET_C \
ASSERT_MATRIX_OK (C, "C for subassign kernel", GB0) ; \
ASSERT (!GB_IS_BITMAP (C)) ; \
const bool C_iso = C->iso ; \
GB_Cp_DECLARE (Cp, const) ; GB_Cp_PTR (Cp, C) ; \
GB_Ci_DECLARE (Ci, ) ; GB_Ci_PTR (Ci, C) ; \
void *Ch = C->h ; \
const int64_t Cnvec = C->nvec ; \
const bool Cp_is_32 = C->p_is_32 ; \
const bool Cj_is_32 = C->j_is_32 ; \
const bool Ci_is_32 = C->i_is_32 ; \
const bool C_is_hyper = (Ch != NULL) ; \
GB_C_TYPE *restrict Cx = (GB_C_ISO) ? NULL : (GB_C_TYPE *) C->x ; \
const size_t csize = C->type->size ; \
const GB_Type_code ccode = C->type->code ; \
const int64_t Cvdim = C->vdim ; \
const int64_t Cvlen = C->vlen ; \
int64_t nzombies = C->nzombies ;
#ifndef GB_DECLAREC
#define GB_DECLAREC(cwork) GB_void cwork [GB_VLA(csize)] ;
#endif
#define GB_GET_C_HYPER_HASH \
GB_OK (GB_hyper_hash_build (C, Werk)) ; \
const void *C_Yp = (C->Y == NULL) ? NULL : C->Y->p ; \
const void *C_Yi = (C->Y == NULL) ? NULL : C->Y->i ; \
const void *C_Yx = (C->Y == NULL) ? NULL : C->Y->x ; \
const int64_t C_hash_bits = (C->Y == NULL) ? 0 : (C->Y->vdim - 1) ;
//------------------------------------------------------------------------------
// GB_GET_MASK: get the mask matrix M
//------------------------------------------------------------------------------
// M and A can be aliased, but both are const.
#define GB_GET_MASK \
ASSERT_MATRIX_OK (M, "mask M", GB0) ; \
GB_Mp_DECLARE (Mp, const) ; GB_Mp_PTR (Mp, M) ; \
GB_Mh_DECLARE (Mh, const) ; GB_Mh_PTR (Mh, M) ; \
GB_Mi_DECLARE (Mi, const) ; GB_Mi_PTR (Mi, M) ; \
const bool Mp_is_32 = M->p_is_32 ; \
const bool Mj_is_32 = M->j_is_32 ; \
const bool Mi_is_32 = M->i_is_32 ; \
const int8_t *Mb = M->b ; \
const GB_M_TYPE *Mx = (GB_M_TYPE *) (GB_MASK_STRUCT ? NULL : (M->x)) ; \
const size_t msize = M->type->size ; \
const size_t Mvlen = M->vlen ; \
const int64_t Mnvec = M->nvec ; \
const bool M_is_hyper = GB_IS_HYPERSPARSE (M) ; \
const bool M_is_bitmap = GB_IS_BITMAP (M) ;
#define GB_GET_MASK_HYPER_HASH \
GB_OK (GB_hyper_hash_build (M, Werk)) ; \
const void *M_Yp = (M->Y == NULL) ? NULL : M->Y->p ; \
const void *M_Yi = (M->Y == NULL) ? NULL : M->Y->i ; \
const void *M_Yx = (M->Y == NULL) ? NULL : M->Y->x ; \
const int64_t M_hash_bits = (M->Y == NULL) ? 0 : (M->Y->vdim - 1) ;
//------------------------------------------------------------------------------
// GB_GET_ACCUM: get the accumulator op and its related typecasting functions
//------------------------------------------------------------------------------
#ifdef GB_GENERIC
#define GB_GET_ACCUM \
ASSERT_BINARYOP_OK (accum, "accum for assign", GB0) ; \
ASSERT (!GB_OP_IS_POSITIONAL (accum)) ; \
const GxB_binary_function faccum = accum->binop_function ; \
GB_CAST_FUNCTION (cast_A_to_Y, accum->ytype->code, acode) ; \
GB_CAST_FUNCTION (cast_C_to_X, accum->xtype->code, ccode) ; \
GB_CAST_FUNCTION (cast_Z_to_C, ccode, accum->ztype->code) ; \
const size_t xsize = accum->xtype->size ; \
const size_t ysize = accum->ytype->size ; \
const size_t zsize = accum->ztype->size ;
#else
#define GB_GET_ACCUM
#endif
#ifndef GB_DECLAREZ
#define GB_DECLAREZ(zwork) GB_void zwork [GB_VLA(zsize)] ;
#endif
#ifndef GB_DECLAREX
#define GB_DECLAREX(xwork) GB_void xwork [GB_VLA(xsize)] ;
#endif
#ifndef GB_DECLAREY
#define GB_DECLAREY(ywork) GB_void ywork [GB_VLA(ysize)] ;
#endif
//------------------------------------------------------------------------------
// GB_GET_A: get the A matrix
//------------------------------------------------------------------------------
#ifndef GB_COPY_aij_to_cwork
#define GB_COPY_aij_to_cwork(cwork,Ax,pA,A_iso) \
cast_A_to_C (cwork, Ax + (A_iso ? 0 : ((pA)*asize)), asize) ;
#endif
#define GB_GET_A \
ASSERT_MATRIX_OK (A, "A for assign", GB0) ; \
const GrB_Type atype = A->type ; \
const size_t asize = atype->size ; \
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ; \
GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ; \
const void *Ah = A->h ; \
const bool Ap_is_32 = A->p_is_32 ; \
const bool Aj_is_32 = A->j_is_32 ; \
const bool Ai_is_32 = A->i_is_32 ; \
const int8_t *Ab = A->b ; \
const int64_t Avlen = A->vlen ; \
const GB_A_TYPE *Ax = (GB_A_TYPE *) A->x ; \
const bool A_iso = A->iso ; \
const bool A_is_bitmap = GB_IS_BITMAP (A) ; \
const bool A_is_hyper = GB_IS_HYPERSPARSE (A) ; \
const int64_t Anvec = A->nvec ; \
const GB_Type_code acode = atype->code ; \
GB_DECLAREC (cwork) ; \
GB_CAST_FUNCTION (cast_A_to_C, ccode, acode) ; \
if (GB_A_ISO) \
{ \
/* cwork = (ctype) Ax [0], typecast iso value of A into cwork */ \
GB_COPY_aij_to_cwork (cwork, Ax, 0, true) ; \
}
#ifndef GB_DECLAREA
#define GB_DECLAREA(awork) GB_void awork [GB_VLA(asize)] ;
#endif
//------------------------------------------------------------------------------
// GB_GET_SCALAR: get the scalar
//------------------------------------------------------------------------------
#ifndef GB_COPY_scalar_to_cwork
#define GB_COPY_scalar_to_cwork(cwork,scalar) \
cast_A_to_C (cwork, scalar, asize) ;
#endif
#define GB_GET_SCALAR \
const GrB_Type atype = scalar_type ; \
ASSERT_TYPE_OK (atype, "atype for assign", GB0) ; \
const size_t asize = atype->size ; \
const GB_Type_code acode = atype->code ; \
GB_DECLAREC (cwork) ; \
GB_CAST_FUNCTION (cast_A_to_C, ccode, acode) ; \
GB_COPY_scalar_to_cwork (cwork, scalar) ;
//------------------------------------------------------------------------------
// GB_GET_ACCUM_SCALAR: get the scalar and the accumulator
//------------------------------------------------------------------------------
#ifndef GB_COPY_scalar_to_ywork
#define GB_COPY_scalar_to_ywork(ywork,scalar) \
cast_A_to_Y (ywork, scalar, asize) ;
#endif
#define GB_GET_ACCUM_SCALAR \
GB_GET_SCALAR ; \
GB_GET_ACCUM ; \
GB_DECLAREY (ywork) ; \
GB_COPY_scalar_to_ywork (ywork, scalar) ;
#ifndef GB_COPY_aij_to_ywork
#define GB_COPY_aij_to_ywork(ywork,Ax,pA,A_iso) \
cast_A_to_Y (ywork, Ax + (A_iso ? 0 : ((pA)*asize)), asize) ;
#endif
#define GB_GET_ACCUM_MATRIX \
GB_GET_A ; \
GB_GET_ACCUM ; \
GB_DECLAREY (ywork) ; \
if (GB_A_ISO) \
{ \
/* ywork = Ax [0], with typecasting */ \
GB_COPY_aij_to_ywork (ywork, Ax, 0, true) ; \
}
//------------------------------------------------------------------------------
// GB_GET_S: get the S matrix
//------------------------------------------------------------------------------
// S is never aliased with any other matrix.
#ifdef GB_JIT_KERNEL
#define GB_GET_SX \
const GB_Sx_TYPE *restrict Sx = S->x ;
#else
#define GB_GET_SX \
const bool Sx_is_32 = (S->type->code == GB_UINT32_code) ; \
GB_MDECL (Sx, const, u) ; \
Sx = S->x ; \
GB_IPTR (Sx, Sx_is_32) ;
#endif
#define GB_GET_S \
ASSERT_MATRIX_OK (S, "S extraction", GB0) ; \
GB_Sp_DECLARE (Sp, const) ; GB_Sp_PTR (Sp, S) ; \
GB_Sh_DECLARE (Sh, const) ; GB_Sh_PTR (Sh, S) ; \
GB_Si_DECLARE (Si, const) ; GB_Si_PTR (Si, S) ; \
const bool Sp_is_32 = S->p_is_32 ; \
const bool Sj_is_32 = S->j_is_32 ; \
const bool Si_is_32 = S->i_is_32 ; \
ASSERT (S->type->code == GB_UINT32_code \
|| S->type->code == GB_UINT64_code) ; \
GB_GET_SX ; \
const int64_t Svlen = S->vlen ; \
const int64_t Snvec = S->nvec ; \
const bool S_is_hyper = GB_IS_HYPERSPARSE (S) ; \
const void *S_Yp = (S->Y == NULL) ? NULL : S->Y->p ; \
const void *S_Yi = (S->Y == NULL) ? NULL : S->Y->i ; \
const void *S_Yx = (S->Y == NULL) ? NULL : S->Y->x ; \
const int64_t S_hash_bits = (S->Y == NULL) ? 0 : (S->Y->vdim - 1) ;
//------------------------------------------------------------------------------
// basic actions
//------------------------------------------------------------------------------
//--------------------------------------------------------------------------
// S_Extraction: finding C(iC,jC) via lookup through S=C(I,J)
//--------------------------------------------------------------------------
// S is the symbolic pattern of the submatrix S = C(I,J). The "numerical"
// value (held in S->x) of an entry S(i,j) is not a value, but a pointer
// back into C where the corresponding entry C(iC,jC) can be found, where
// iC = I [i] and jC = J [j].
// The following macro performs the lookup. Given a pointer pS into a
// column S(:,j), it finds the entry C(iC,jC), and also determines if the
// C(iC,jC) entry is a zombie. The column indices j and jC are implicit.
// Used for Methods 00 to 04, 06s, and 09 to 20, all of which use S.
#define GB_C_S_LOOKUP \
int64_t pC = GB_IGET (Sx, pS) ; \
int64_t iC = GBi_C (Ci, pC, Cvlen) ; \
bool is_zombie = GB_IS_ZOMBIE (iC) ; \
if (is_zombie) iC = GB_DEZOMBIE (iC) ;
//--------------------------------------------------------------------------
// C(:,jC) is dense: iC = I [iA], and then look up C(iC,jC)
//--------------------------------------------------------------------------
// C(:,jC) is dense, and thus can be accessed with a O(1)-time lookup
// with the index iC, where the index iC comes from I [iA] or via a
// colon notation for I.
// This used for Methods 05, 06n, 07, and 08n, which do not use S.
#define GB_iC_DENSE_LOOKUP \
int64_t iC = GB_IJLIST (I, iA, GB_I_KIND, Icolon) ; \
int64_t pC = pC_start + iC ; \
bool is_zombie = (Ci != NULL) && GB_IS_ZOMBIE (GB_IGET (Ci, pC)) ; \
ASSERT (GB_IMPLIES (Ci != NULL, GB_UNZOMBIE (GB_IGET (Ci, pC)) == iC)) ;
//--------------------------------------------------------------------------
// get C(iC,jC) via binary search of C(:,jC)
//--------------------------------------------------------------------------
// This used for Methods 05, 06n, 07, and 08n, which do not use S.
// New zombies may be introduced into C during the parallel computation.
// No coarse task shares the same C(:,jC) vector, so no race condition can
// occur. Fine tasks do share the same C(:,jC) vector, but each fine task
// is given a unique range of pC_start:pC_end-1 to search. Thus, no binary
// search of any fine tasks conflict with each other.
#define GB_iC_BINARY_SEARCH(may_see_zombies) \
int64_t iC = GB_IJLIST (I, iA, GB_I_KIND, Icolon) ; \
int64_t pC = pC_start ; \
int64_t pright = pC_end - 1 ; \
bool cij_found, is_zombie ; \
cij_found = GB_binary_search_zombie (iC, Ci, GB_Ci_IS_32, \
&pC, &pright, may_see_zombies, &is_zombie) ;
//--------------------------------------------------------------------------
// basic operations
//--------------------------------------------------------------------------
#ifndef GB_COPY_cwork_to_C
#define GB_COPY_cwork_to_C(Cx,pC,cwork,C_iso) \
{ \
/* C(iC,jC) = scalar, already typecasted into cwork */ \
if (!C_iso) \
{ \
memcpy (Cx +((pC)*csize), cwork, csize) ; \
} \
}
#endif
#ifndef GB_COPY_aij_to_C
#define GB_COPY_aij_to_C(Cx,pC,Ax,pA,A_iso,cwork,C_iso) \
{ \
/* C(iC,jC) = (ctype) A(i,j), with typecasting */ \
if (!C_iso) \
{ \
if (A_iso) \
{ \
/* cwork = (ctype) Ax [0], A iso value already done */ \
memcpy (Cx +((pC)*csize), cwork, csize) ; \
} \
else \
{ \
cast_A_to_C (Cx +(pC*csize), Ax +(pA*asize), asize) ; \
} \
} \
}
#endif
#ifndef GB_ACCUMULATE_scalar
#define GB_ACCUMULATE_scalar(Cx,pC,ywork,C_iso) \
{ \
if (!C_iso) \
{ \
/* C(iC,jC) += ywork, with typecasting */ \
GB_DECLAREX (xwork) ; \
cast_C_to_X (xwork, Cx +(pC*csize), csize) ; \
GB_DECLAREZ (zwork) ; \
faccum (zwork, xwork, ywork) ; \
cast_Z_to_C (Cx +(pC*csize), zwork, csize) ; \
} \
}
#endif
#ifndef GB_ACCUMULATE_aij
#define GB_ACCUMULATE_aij(Cx,pC,Ax,pA,A_iso,ywork,C_iso) \
{ \
/* Cx [pC] += (ytype) Ax [A_iso ? 0 : pA] */ \
if (!C_iso) \
{ \
/* xwork = (xtype) Cx [pC] */ \
GB_DECLAREX (xwork) ; \
cast_C_to_X (xwork, Cx +(pC*csize), csize) ; \
GB_DECLAREZ (zwork) ; \
if (A_iso) \
{ \
/* zwork = op (xwork, ywork) */ \
faccum (zwork, xwork, ywork) ; \
} \
else \
{ \
/* ywork = (ytype) A(i,j) */ \
GB_DECLAREY (ywork) ; \
cast_A_to_Y (ywork, Ax + (pA*asize), asize) ; \
/* zwork = op (xwork, ywork) */ \
faccum (zwork, xwork, ywork) ; \
} \
/* Cx [pC] = (ctype) zwork */ \
cast_Z_to_C (Cx +(pC*csize), zwork, csize) ; \
} \
}
#endif
#define GB_DELETE \
{ \
/* turn C(iC,jC) into a zombie */ \
ASSERT (!GB_IS_FULL (C)) ; \
task_nzombies++ ; \
GB_ISET (Ci, pC, GB_ZOMBIE (iC)) ; /* Ci [pC] = GB_ZOMBIE (iC) */ \
}
#define GB_UNDELETE \
{ \
/* bring a zombie C(iC,jC) back to life; */ \
/* the value of C(iC,jC) must also be assigned. */ \
ASSERT (!GB_IS_FULL (C)) ; \
GB_ISET (Ci, pC, iC) ; /* Ci [pC] = iC */ \
task_nzombies-- ; \
}
//--------------------------------------------------------------------------
// C(I,J)<M> = accum (C(I,J),A): consider all cases
//--------------------------------------------------------------------------
// The matrix C may have pending tuples and zombies:
// (1) pending tuples: this is a list of pending updates held as a set
// of (i,j,x) tuples. They had been added to the list via a prior
// GrB_setElement or GxB_subassign. No operator needs to be applied to
// them; the implied operator is SECOND, for both GrB_setElement and
// GxB_subassign, regardless of whether or not an accum operator is
// present. Pending tuples are inserted if and only if the
// corresponding entry C(i,j) does not exist, and in that case no accum
// operator is applied.
// The GrB_setElement method (C(i,j) = x) is same as GxB_subassign
// with: accum is SECOND, C not replaced, no mask M, mask not
// complemented. If GrB_setElement needs to insert its update as
// a pending tuple, then it will always be compatible with all
// pending tuples inserted here, by GxB_subassign.
// (2) zombie entries. These are entries that are still present in the
// pattern but marked for deletion (via GB_ZOMBIE (i) for row i).
// For the current GxB_subassign, there are 16 cases to handle,
// all combinations of the following options:
// accum is NULL, accum is not NULL
// C is not replaced, C is replaced
// no mask, mask is present
// mask is not complemented, mask is complemented
// Complementing an empty mask: This does not require the matrix A
// at all so it is handled as a special case. It corresponds to
// the GB_RETURN_IF_QUICK_MASK option in other GraphBLAS operations.
// Thus only 12 cases are considered in the tables below:
// These 4 cases are listed in Four Tables below:
// 2 cases: accum is NULL, accum is not NULL
// 2 cases: C is not replaced, C is replaced
// 3 cases: no mask, M is present and not complemented,
// and M is present and complemented. If there is no
// mask, then M(i,j)=1 for all (i,j). These 3 cases
// are the columns of each of the Four Tables.
// Each of these 12 cases can encounter up to 12 combinations of
// entries in C, A, and M (6 if no mask M is present). The left
// column of the Four Tables below consider all 12 combinations for all
// (i,j) in the cross product IxJ:
// C(I(i),J(j)) present, zombie, or not there: C, X, or '.'
// A(i,j) present or not, labeled 'A' or '.' below
// M(i,j) = 1 or 0 (but only if M is present)
// These 12 cases become the left columns as listed below.
// The zombie cases are handled a sub-case for "C present:
// regular entry or zombie". The acronyms below use "D" for
// "dot", meaning the entry (C or A) is not present.
// [ C A 1 ] C_A_1: both C and A present, M=1
// [ X A 1 ] C_A_1: both C and A present, M=1, C is a zombie
// [ . A 1 ] D_A_1: C not present, A present, M=1
// [ C . 1 ] C_D_1: C present, A not present, M=1
// [ X . 1 ] C_D_1: C present, A not present, M=1, C a zombie
// [ . . 1 ] only M=1 present, but nothing to do
// [ C A 0 ] C_A_0: both C and A present, M=0
// [ X A 0 ] C_A_0: both C and A present, M=0, C is a zombie
// [ . A 0 ] C not present, A present, M=0,
// nothing to do
// [ C . 0 ] C_D_0: C present, A not present, M=1
// [ X . 0 ] C_D_0: C present, A not present, M=1, C a zombie
// [ . . 0 ] only M=0 present, but nothing to do
// Legend for action taken in the right half of the table:
// delete live entry C(I(i),J(j)) marked for deletion (zombie)
// =A live entry C(I(i),J(j)) is overwritten with new value
// =C+A live entry C(I(i),J(j)) is modified with accum(c,a)
// C live entry C(I(i),J(j)) is unchanged
// undelete entry C(I(i),J(j)) a zombie, bring back with A(i,j)
// X entry C(I(i),J(j)) a zombie, no change, still zombie
// insert entry C(I(i),J(j)) not present, add pending tuple
// . entry C(I(i),J(j)) not present, no change
// blank the table is left blank where the the event cannot
// occur: GxB_subassign with no M cannot have
// M(i,j)=0, and GrB_setElement does not have the M
// column
//----------------------------------------------------------------------
// GrB_setElement and the Four Tables for GxB_subassign:
//----------------------------------------------------------------------
//------------------------------------------------------------
// GrB_setElement: no mask
//------------------------------------------------------------
// C A 1 =A |
// X A 1 undelete |
// . A 1 insert |
// GrB_setElement acts exactly like GxB_subassign with the
// implicit GrB_SECOND_Ctype operator, I=i, J=j, and a
// 1-by-1 matrix A containing a single entry (not an
// implicit entry; there is no "." for A). That is,
// nnz(A)==1. No mask, and the descriptor is the default;
// C_replace effectively false, mask not complemented, A
// not transposed. As a result, GrB_setElement can be
// freely mixed with calls to GxB_subassign with C_replace
// effectively false and with the identical
// GrB_SECOND_Ctype operator. These calls to
// GxB_subassign can use the mask, either complemented or
// not, and they can transpose A if desired, and there is
// no restriction on I and J. The matrix A can be any
// type and the type of A can change from call to call.
//------------------------------------------------------------
// NO accum | no mask mask mask
// NO repl | not compl compl
//------------------------------------------------------------
// C A 1 =A =A C |
// X A 1 undelete undelete X |
// . A 1 insert insert . |
// C . 1 delete delete C |
// X . 1 X X X |
// . . 1 . . . |
// C A 0 C =A |
// X A 0 X undelete |
// . A 0 . insert |
// C . 0 C delete |
// X . 0 X X |
// . . 0 . . |
// S_Extraction method works well: first extract pattern
// of S=C(I,J). Then examine all of A, M, S, and update
// C(I,J). The method needs to examine all entries in
// in C(I,J) to delete them if A is not present, so
// S=C(I,J) is not costly.
//------------------------------------------------------------
// NO accum | no mask mask mask
// WITH repl | not compl compl
//------------------------------------------------------------
// C A 1 =A =A delete |
// X A 1 undelete undelete X |
// . A 1 insert insert . |
// C . 1 delete delete delete |
// X . 1 X X X |
// . . 1 . . . |
// C A 0 delete =A |
// X A 0 X undelete |
// . A 0 . insert |
// C . 0 delete delete |
// X . 0 X X |
// . . 0 . . |
// S_Extraction method works well, since all of C(I,J)
// needs to be traversed, S=C(I,J) is reasonable to
// compute.
// With no accum: If there is no M and M is not
// complemented, then C_replace is irrelevant, Whether
// true or false, the results in the two tables
// above are the same.
//------------------------------------------------------------
// ACCUM | no mask mask mask
// NO repl | not compl compl
//------------------------------------------------------------
// C A 1 =C+A =C+A C |
// X A 1 undelete undelete X |
// . A 1 insert insert . |
// C . 1 C C C |
// X . 1 X X X |
// . . 1 . . . |
// C A 0 C =C+A |
// X A 0 X undelete |
// . A 0 . insert |
// C . 0 C C |
// X . 0 X X |
// . . 0 . . |
// With ACCUM but NO C_replace: This method only needs to
// examine entries in A. It does not need to examine all
// entries in C(I,J), nor all entries in M. Entries in
// C but in not A remain unchanged. This is like an
// extended GrB_setElement. No entries in C can be
// deleted. All other methods must examine all of C(I,J).
// Without S_Extraction: C(:,J) or M have many entries
// compared with A, do not extract S=C(I,J); use
// binary search instead. Otherwise, use the same
// S_Extraction method as the other 3 cases.
// S_Extraction method: if nnz(C(:,j)) + nnz(M) is
// similar to nnz(A) then the S_Extraction method would
// work well.
//------------------------------------------------------------
// ACCUM | no mask mask mask
// WITH repl | not compl compl
//------------------------------------------------------------
// C A 1 =C+A =C+A delete |
// X A 1 undelete undelete X |
// . A 1 insert insert . |
// C . 1 C C delete |
// X . 1 X X X |
// . . 1 . . . |
// C A 0 delete =C+A |
// X A 0 X undelete |
// . A 0 . insert |
// C . 0 delete C |
// X . 0 X X |
// . . 0 . . |
// S_Extraction method works well since all entries
// in C(I,J) must be examined.
// With accum: If there is no M and M is not
// complemented, then C_replace is irrelavant, Whether
// true or false, the results in the two tables
// above are the same.
// This condition on C_replace holds with our without
// accum. Thus, if there is no M, and M is
// not complemented, the C_replace can be set to false.
//------------------------------------------------------------
// ^^^^^ legend for left columns above:
// C prior entry C(I(i),J(j)) exists
// X prior entry C(I(i),J(j)) exists but is a zombie
// . no prior entry C(I(i),J(j))
// A A(i,j) exists
// . A(i,j) does not exist
// 1 M(i,j)=1, assuming M exists (or if implicit)
// 0 M(i,j)=0, only if M exists
//----------------------------------------------------------------------
// Actions in the Four Tables above
//----------------------------------------------------------------------
// Each entry in the Four Tables above are now explained in more
// detail, describing what must be done in each case. Zombies and
// pending tuples are disjoint; they do not mix. Zombies are IN
// the pattern but pending tuples are updates that are NOT in the
// pattern. That is why a separate list of pending tuples must be
// kept; there is no place for them in the pattern. Zombies, on
// the other hand, are entries IN the pattern that have been
// marked for deletion.
//--------------------------------
// For entries NOT in the pattern:
//--------------------------------
// They can have pending tuples, and can acquire more. No zombies.
// ( insert ):
// An entry C(I(i),J(j)) is NOT in the pattern, but its
// value must be modified. This is an insertion, like
// GrB_setElement, and the insertion is added as a pending
// tuple for C(I(i),J(j)). There can be many insertions
// to the same element, each in the list of pending
// tuples, in order of their insertion. Eventually these
// pending tuples must be assembled into C(I(i),J(j)) in
// the right order using the implied SECOND operator.
// ( . ):
// no change. C(I(i),J(j)) not in the pattern, and not
// modified. This C(I(i),J(j)) position could have
// pending tuples, in the list of pending tuples, but none
// of them are changed. If C_replace is true then those
// pending tuples would have to be discarded, but that
// condition will not occur because C_replace=true forces
// all prior tuples to the matrix to be assembled.
//--------------------------------
// For entries IN the pattern:
//--------------------------------
// They have no pending tuples, and acquire none. It can be
// zombie, can become a zombie, or a zombie can come back to life.
// ( delete ):
// C(I(i),J(j)) becomes a zombie, by changing its row
// index via the GB_ZOMBIE function.
// ( undelete ):
// C(I(i),J(j)) = A(i,j) was a zombie and is no longer a
// zombie. Its row index is restored with GB_DEZOMBIE.
// ( X ):
// C(I(i),J(j)) was a zombie, and still is a zombie. row
// index is < 0, and actual index is GB_DEZOMBIE (I(i))
// ( C ):
// no change; C(I(i),J(j)) already an entry, and its value
// doesn't change.
// ( =A ):
// C(I(i),J(j)) = A(i,j), value gets overwritten.
// ( =C+A ):
// C(I(i),J(j)) = accum (C(I(i),J(j)), A(i,j))
// The existing balue is modified via the accumulator.
//--------------------------------------------------------------------------
// handling each action
//--------------------------------------------------------------------------
// Each of the 12 cases are handled by the following actions,
// implemented as macros. The Four Tables are re-sorted below,
// and folded together according to their left column.
// Once the M(i,j) entry is extracted, all GB_subassign_* functions
// explicitly complement the scalar value if Mask_comp is true, before
// using these action functions. For the [no mask] case, M(i,j)=1.
// Thus, only the middle column needs to be considered by each action;
// the action will handle all three columns at the same time. All
// three columns remain in the re-sorted tables below for reference.
//----------------------------------------------------------------------
// ----[C A 1] or [X A 1]: C and A present, M=1
//----------------------------------------------------------------------
//------------------------------------------------
// | no mask mask mask
// | not compl compl
//------------------------------------------------
// C A 1 =A =A C | no accum,no Crepl
// C A 1 =A =A delete | no accum,Crepl
// C A 1 =C+A =C+A C | accum, no Crepl
// C A 1 =C+A =C+A delete | accum, Crepl
// X A 1 undelete undelete X | no accum,no Crepl
// X A 1 undelete undelete X | no accum,Crepl
// X A 1 undelete undelete X | accum, no Crepl
// X A 1 undelete undelete X | accum, Crepl
// Both C(I(i),J(j)) == S(i,j) and A(i,j) are present, and mij = 1.
// C(I(i),J(i)) is updated with the entry A(i,j).
// C_replace has no impact on this action.
// [X A 1] matrix case
#define GB_X_A_1_matrix \
{ \
/* ----[X A 1] */ \
/* action: ( undelete ): bring a zombie back to life */ \
GB_UNDELETE ; \
GB_COPY_aij_to_C (Cx,pC,Ax,pA,GB_A_ISO,cwork,GB_C_ISO) ; \
}
// [X A 1] scalar case
#define GB_X_A_1_scalar \
{ \
/* ----[X A 1] */ \
/* action: ( undelete ): bring a zombie back to life */ \
GB_UNDELETE ; \
GB_COPY_cwork_to_C (Cx, pC, cwork, GB_C_ISO) ; \
}
// [C A 1] matrix case when accum is present
#define GB_withaccum_C_A_1_matrix \
{ \
if (is_zombie) \
{ \
/* ----[X A 1] */ \
/* action: ( undelete ): bring a zombie back to life */ \
GB_X_A_1_matrix ; \
} \
else \
{ \
/* ----[C A 1] with accum */ \
/* action: ( =C+A ): apply the accumulator */ \
GB_ACCUMULATE_aij (Cx,pC,Ax,pA,GB_A_ISO,ywork,GB_C_ISO);\
} \
}
// [C A 1] scalar case when accum is present
#define GB_withaccum_C_A_1_scalar \
{ \
if (is_zombie) \
{ \
/* ----[X A 1] */ \
/* action: ( undelete ): bring a zombie back to life */ \
GB_X_A_1_scalar ; \
} \
else \
{ \
/* ----[C A 1] with accum, scalar expansion */ \
/* action: ( =C+A ): apply the accumulator */ \
GB_ACCUMULATE_scalar (Cx,pC,ywork,GB_C_ISO) ; \
} \
}
// [C A 1] matrix case when no accum is present
#define GB_noaccum_C_A_1_matrix \
{ \
if (is_zombie) \
{ \
/* ----[X A 1] */ \
/* action: ( undelete ): bring a zombie back to life */ \
GB_X_A_1_matrix ; \
} \
else \
{ \
/* ----[C A 1] no accum, scalar expansion */ \
/* action: ( =A ): copy A into C */ \
GB_COPY_aij_to_C (Cx,pC,Ax,pA,GB_A_ISO,cwork,GB_C_ISO) ;\
} \
}
// [C A 1] scalar case when no accum is present
#define GB_noaccum_C_A_1_scalar \
{ \
if (is_zombie) \
{ \
/* ----[X A 1] */ \
/* action: ( undelete ): bring a zombie back to life */ \
GB_X_A_1_scalar ; \
} \
else \
{ \
/* ----[C A 1] no accum, scalar expansion */ \
/* action: ( =A ): copy A into C */ \
GB_COPY_cwork_to_C (Cx, pC, cwork, GB_C_ISO) ; \
} \
}
//----------------------------------------------------------------------
// ----[. A 1]: C not present, A present, M=1
//----------------------------------------------------------------------
//------------------------------------------------
// | no mask mask mask
// | not compl compl
//------------------------------------------------
// . A 1 insert insert . | no accum,no Crepl
// . A 1 insert insert . | no accum,Crepl
// . A 1 insert insert . | accum, no Crepl
// . A 1 insert insert . | accum, Crepl
// C(I(i),J(j)) == S (i,j) is not present, A (i,j) is present, and
// mij = 1. The mask M allows C to be written, but no entry present
// in C (neither a live entry nor a zombie). This entry must be
// added to C but it doesn't fit in the pattern. It is added as a
// pending tuple. Zombies and pending tuples do not intersect.
// If adding the pending tuple fails, C is cleared entirely.
// Otherwise the matrix C would be left in an incoherent partial
// state of computation. It's cleaner to just free it all.
#if 0
#define GB_D_A_1_scalar \
{ \
/* ----[. A 1] */ \
/* action: ( insert ) */ \
GB_PENDING_INSERT_scalar ; \
}
#define GB_D_A_1_matrix \
{ \
/* ----[. A 1] */ \
/* action: ( insert ) */ \
GB_PENDING_INSERT_aij ; \
}
#endif
//----------------------------------------------------------------------
// ----[C . 1] or [X . 1]: C present, A not present, M=1
//----------------------------------------------------------------------
//------------------------------------------------
// | no mask mask mask
// | not compl compl
//------------------------------------------------
// C . 1 delete delete C | no accum,no Crepl
// C . 1 delete delete delete | no accum,Crepl
// C . 1 C C C | accum, no Crepl
// C . 1 C C delete | accum, Crepl
// X . 1 X X X | no accum,no Crepl
// X . 1 X X X | no accum,Crepl
// X . 1 X X X | accum, no Crepl
// X . 1 X X X | accum, Crepl
// C(I(i),J(j)) == S (i,j) is present, A (i,j) not is present, and
// mij = 1. The mask M allows C to be written, but no entry present
// in A. If no accum operator is present, C becomes a zombie.
// This condition cannot occur if A is a dense matrix,
// nor for scalar expansion
// [C . 1] matrix case when no accum is present
#if 0
#define GB_noaccum_C_D_1_matrix \
{ \
if (is_zombie) \
{ \
/* ----[X . 1] */ \
/* action: ( X ): still a zombie */ \
} \
else \
{ \
/* ----[C . 1] no accum */ \
/* action: ( delete ): becomes a zombie */ \
GB_DELETE ; \
} \
}
#endif
// The above action is done via GB_DELETE_ENTRY.
//----------------------------------------------------------------------
// ----[C A 0] or [X A 0]: both C and A present but M=0
//----------------------------------------------------------------------
//------------------------------------------------
// | no mask mask mask
// | not compl compl
//------------------------------------------------
// C A 0 C =A | no accum,no Crepl
// C A 0 delete =A | no accum,Crepl
// C A 0 C =C+A | accum, no Crepl
// C A 0 delete =C+A | accum, Crepl
// X A 0 X undelete | no accum,no Crepl
// X A 0 X undelete | no accum,Crepl
// X A 0 X undelete | accum, no Crepl
// X A 0 X undelete | accum, Crepl
// Both C(I(i),J(j)) == S(i,j) and A(i,j) are present, and mij = 0.
// The mask prevents A being written to C, so A has no effect on
// the result. If C_replace is true, however, the entry is
// deleted, becoming a zombie. This case does not occur if
// the mask M is not present. This action also handles the
// [C . 0] and [X . 0] cases; see the next section below.
// This condition can still occur if A is dense, so if a mask M is
// present, entries can still be deleted from C. As a result, the
// fact that A is dense cannot be exploited when the mask M is
// present.
#if 0
#define GB_C_A_0 \
{ \
if (is_zombie) \
{ \
/* ----[X A 0] */ \
/* ----[X . 0] */ \
/* action: ( X ): still a zombie */ \
} \
else if (C_replace) \
{ \
/* ----[C A 0] replace */ \
/* ----[C . 0] replace */ \
/* action: ( delete ): becomes a zombie */ \
GB_DELETE ; \
} \
else \
{ \
/* ----[C A 0] no replace */ \
/* ----[C . 0] no replace */ \
/* action: ( C ): no change */ \
} \
}
#endif
// The above action is done via GB_DELETE_ENTRY.
// The above action is very similar to C_D_1. The only difference
// is how the entry C becomes a zombie. With C_D_1, there is no
// entry in A, so C becomes a zombie if no accum function is used
// because the implicit value A(i,j) gets copied into C, causing it
// to become an implicit value also (deleting the entry in C).
// With C_A_0, the entry C is protected from any modification from
// A (regardless of accum or not). However, if C_replace is true,
// the entry is cleared. The mask M does not protect C from the
// C_replace action.
// If C_replace is false, then the [C A 0] action does nothing.
// If C_replace is true, then the action becomes the following:
#define GB_DELETE_ENTRY \
{ \
if (!is_zombie) \
{ \
GB_DELETE ; \
} \
}
//----------------------------------------------------------------------
// ----[C . 0] or [X . 0]: C present, A not present, M=0
//----------------------------------------------------------------------
//------------------------------------------------
// | no mask mask mask
// | not compl compl
//------------------------------------------------
// C . 0 C delete | no accum,no Crepl
// C . 0 delete delete | no accum,Crepl
// C . 0 C C | accum, no Crepl
// C . 0 delete C | accum, Crepl
// X . 0 X X | no accum,no Crepl
// X . 0 X X | no accum,Crepl
// X . 0 X X | accum, no Crepl
// X . 0 X X | accum, Crepl
// C(I(i),J(j)) == S(i,j) is present, but A(i,j) is not present,
// and mij = 0. Since A(i,j) has no effect on the result,
// this is the same as the C_A_0 action above.
// This condition cannot occur if A is a dense matrix, nor for
// scalar expansion, but the existence of the entry A is not
// relevant.
// If C_replace is false, then the [C D 0] action does nothing.
// If C_replace is true, then the action becomes GB_DELETE_ENTRY.
#if 0
#define GB_C_D_0 GB_C_A_0
#endif
//----------------------------------------------------------------------
// ----[. A 0]: C not present, A present, M=0
//----------------------------------------------------------------------
// . A 0 . insert | no accum,no Crepl
// . A 0 . insert | no accum,no Crepl
// . A 0 . insert | accum, no Crepl
// . A 0 . insert | accum, Crepl
// C(I(i),J(j)) == S(i,j) is not present, A(i,j) is present,
// but mij = 0. The mask M prevents A from modifying C, so the
// A(i,j) entry is ignored. C_replace has no effect since the
// entry is already cleared. There is nothing to do.
//----------------------------------------------------------------------
// ----[. . 1] and [. . 0]: no entries in C and A, M = 0 or 1
//----------------------------------------------------------------------
//------------------------------------------------
// | no mask mask mask
// | not compl compl
//------------------------------------------------
// . . 1 . . . | no accum,no Crepl
// . . 1 . . . | no accum,Crepl
// . . 1 . . . | accum, no Crepl
// . . 1 . . . | accum, Crepl
// . . 0 . . . | no accum,no Crepl
// . . 0 . . . | no accum,Crepl
// . . 0 . . . | accum, no Crepl
// . . 0 . . . | accum, Crepl
// Neither C(I(i),J(j)) == S(i,j) nor A(i,j) are not present,
// Nothing happens. The M(i,j) entry is present, otherwise
// this (i,j) position would not be considered at all.
// The M(i,j) entry has no effect. There is nothing to do.
//------------------------------------------------------------------------------
// GB_ALLOCATE_NPENDING_WERK: allocate Npending workspace
//------------------------------------------------------------------------------
#define GB_ALLOCATE_NPENDING_WERK \
GB_WERK_PUSH (Npending, ntasks+1, int64_t) ; \
if (Npending == NULL) \
{ \
GB_FREE_ALL ; \
return (GrB_OUT_OF_MEMORY) ; \
}
//------------------------------------------------------------------------------
// GB_SUBASSIGN_ONE_SLICE: slice one matrix (M)
//------------------------------------------------------------------------------
// Methods: 05, 06n, 07. If C is dense, it is sliced for a fine task, so that
// it can do a binary search via GB_iC_BINARY_SEARCH. But if C(:,jC) is dense,
// C(:,jC) is not sliced, so the fine task must do a direct lookup via
// GB_iC_DENSE_LOOKUP. Otherwise a race condition will occur.
#define GB_SUBASSIGN_ONE_SLICE(M) \
GB_OK (GB_subassign_one_slice ( \
&TaskList, &TaskList_size, &ntasks, &nthreads, C, \
I, GB_I_IS_32, nI, GB_I_KIND, Icolon, \
J, GB_J_IS_32, nJ, GB_J_KIND, Jcolon, \
M, Werk)) ; \
GB_ALLOCATE_NPENDING_WERK ;
//------------------------------------------------------------------------------
// GB_SUBASSIGN_TWO_SLICE: slice two matrices
//------------------------------------------------------------------------------
// Methods: 02, 04, 06s_and_14, 08s_and_16, 09, 10_and_18, 11, 12_and_20
// Create tasks for Z = X+S, and the mapping of Z to X and S. The matrix X is
// either A or M. No need to examine C, since it will be accessed via S, not
// via binary search.
// If X is bitmap, this method is not used. Instead, GB_SUBASSIGN_IXJ_SLICE is
// used to iterate over the matrix X.
#define GB_SUBASSIGN_TWO_SLICE(X,S) \
int Z_sparsity = GxB_SPARSE ; \
int64_t Znvec ; \
bool Zp_is_32, Zj_is_32, Zi_is_32 ; \
GB_OK (GB_add_phase0 ( \
&Znvec, &Zh, &Zh_size, NULL, NULL, &Z_to_X, &Z_to_X_size, \
&Z_to_S, &Z_to_S_size, NULL, &Zp_is_32, &Zj_is_32, &Zi_is_32, \
&Z_sparsity, NULL, X, S, Werk)) ; \
GB_IPTR (Zh, Zj_is_32) ; \
GB_OK (GB_ewise_slice ( \
&TaskList, &TaskList_size, &ntasks, &nthreads, \
Znvec, Zh, Zj_is_32, NULL, Z_to_X, Z_to_S, false, \
NULL, X, S, Werk)) ; \
GB_ALLOCATE_NPENDING_WERK ;
//------------------------------------------------------------------------------
// GB_SUBASSIGN_IXJ_SLICE: slice IxJ for a scalar assignement method
//------------------------------------------------------------------------------
// Methods: 01, 02, 03, 04, 11, 06s_and_14, 08s_and_16, 09, 12_and_20,
// 10_and_18, 13, 15, 17, 19, and bitmap assignment.
#define GB_SUBASSIGN_IXJ_SLICE \
GB_OK (GB_subassign_IxJ_slice (&TaskList, &TaskList_size, &ntasks, \
&nthreads, nI, nJ, Werk)) ; \
GB_ALLOCATE_NPENDING_WERK ;
//------------------------------------------------------------------------------
// GB_GET_TASK_DESCRIPTOR: get coarse/fine task descriptor
//------------------------------------------------------------------------------
#define GB_GET_TASK_DESCRIPTOR \
int64_t kfirst = TaskList [taskid].kfirst ; \
int64_t klast = TaskList [taskid].klast ; \
bool fine_task = (klast == -1) ; \
if (fine_task) \
{ \
/* a fine task operates on a slice of a single vector */ \
klast = kfirst ; \
} \
#define GB_GET_TASK_DESCRIPTOR_PHASE1 \
GB_GET_TASK_DESCRIPTOR ; \
int64_t task_nzombies = 0 ; \
int64_t task_pending = 0 ;
//------------------------------------------------------------------------------
// GB_GET_VECTOR_M: get the content of a vector of M for a coarse/fine task
//------------------------------------------------------------------------------
// This method is used for methods 05, 06n, and 07.
// GB_GET_VECTOR_M: optimized for the M matrix
#define GB_GET_VECTOR_M \
int64_t pM, pM_end ; \
if (fine_task) \
{ \
/* A fine task operates on a slice of M(:,k) */ \
pM = TaskList [taskid].pA ; \
pM_end = TaskList [taskid].pA_end ; \
} \
else \
{ \
/* vectors are never sliced for a coarse task */ \
pM = GBp_M (Mp, k, Mvlen) ; \
pM_end = GBp_M (Mp, k+1, Mvlen) ; \
}
//------------------------------------------------------------------------------
// GB_GET_IXJ_TASK_DESCRIPTOR*: get the task descriptor for IxJ
//------------------------------------------------------------------------------
// Q denotes the Cartesian product IXJ
#define GB_GET_IXJ_TASK_DESCRIPTOR(iQ_start,iQ_end) \
GB_GET_TASK_DESCRIPTOR ; \
int64_t iQ_start = 0, iQ_end = nI ; \
if (fine_task) \
{ \
iQ_start = TaskList [taskid].pA ; \
iQ_end = TaskList [taskid].pA_end ; \
}
#define GB_GET_IXJ_TASK_DESCRIPTOR_PHASE1(iQ_start,iQ_end) \
GB_GET_IXJ_TASK_DESCRIPTOR (iQ_start, iQ_end) \
int64_t task_nzombies = 0 ; \
int64_t task_pending = 0 ;
#define GB_GET_IXJ_TASK_DESCRIPTOR_PHASE2(iQ_start,iQ_end) \
GB_GET_IXJ_TASK_DESCRIPTOR (iQ_start, iQ_end) \
GB_START_PENDING_INSERTION ;
//------------------------------------------------------------------------------
// GB_LOOKUP_VECTOR_X: Find pX_start and pX_end for the vector X (:,j)
//------------------------------------------------------------------------------
// GB_LOOKUP_VECTOR_C: find pC_start and pC_end for C(:,j)
#define GB_LOOKUP_VECTOR_C(j,pC_start,pC_end) \
{ \
if (GB_C_IS_HYPER) \
{ \
GB_hyper_hash_lookup (GB_Cp_IS_32, GB_Cj_IS_32, \
Ch, Cnvec, Cp, C_Yp, C_Yi, C_Yx, C_hash_bits, \
j, &pC_start, &pC_end) ; \
} \
else \
{ \
pC_start = GBp_C (Cp, j , Cvlen) ; \
pC_end = GBp_C (Cp, j+1, Cvlen) ; \
} \
}
// GB_LOOKUP_VECTOR_M: find pM_start and pM_end for M(:,j)
#define GB_LOOKUP_VECTOR_M(j,pM_start,pM_end) \
{ \
if (GB_M_IS_HYPER) \
{ \
GB_hyper_hash_lookup (GB_Mp_IS_32, GB_Mj_IS_32, \
Mh, Mnvec, Mp, M_Yp, M_Yi, M_Yx, M_hash_bits, \
j, &pM_start, &pM_end) ; \
} \
else \
{ \
pM_start = GBp_M (Mp, j , Mvlen) ; \
pM_end = GBp_M (Mp, j+1, Mvlen) ; \
} \
}
// GB_LOOKUP_VECTOR_A: find pA_start and pA_end for A(:,j)
#define GB_LOOKUP_VECTOR_A(j,pA_start,pA_end) \
{ \
if (GB_A_IS_HYPER) \
{ \
GB_hyper_hash_lookup (GB_Ap_IS_32, GB_Aj_IS_32, \
Ah, Anvec, Ap, A_Yp, A_Yi, A_Yx, A_hash_bits, \
j, &pA_start, &pA_end) ; \
} \
else \
{ \
pA_start = GBp_A (Ap, j , Avlen) ; \
pA_end = GBp_A (Ap, j+1, Avlen) ; \
} \
}
// GB_LOOKUP_VECTOR_S: find pS_start and pS_end for S(:,j)
#define GB_LOOKUP_VECTOR_S(j,pS_start,pS_end) \
{ \
if (GB_S_IS_HYPER) \
{ \
GB_hyper_hash_lookup (GB_Sp_IS_32, GB_Sj_IS_32, \
Sh, Snvec, Sp, S_Yp, S_Yi, S_Yx, S_hash_bits, \
j, &pS_start, &pS_end) ; \
} \
else \
{ \
pS_start = GBp_S (Sp, j , Svlen) ; \
pS_end = GBp_S (Sp, j+1, Svlen) ; \
} \
}
//------------------------------------------------------------------------------
// GB_LOOKUP_VECTOR_jC: get the vector C(:,jC) where jC = J [j]
//------------------------------------------------------------------------------
#define GB_LOOKUP_VECTOR_jC \
/* lookup jC in C */ \
/* jC = J [j] ; or J is ":" or jbegin:jend or jbegin:jinc:jend */ \
int64_t jC = GB_IJLIST (J, j, GB_J_KIND, Jcolon) ; \
int64_t pC_start, pC_end ; \
if (fine_task) \
{ \
pC_start = TaskList [taskid].pC ; \
pC_end = TaskList [taskid].pC_end ; \
} \
else \
{ \
GB_LOOKUP_VECTOR_C (jC, pC_start, pC_end) ; \
}
//------------------------------------------------------------------------------
// GB_LOOKUP_VECTOR_X_FOR_IXJ: get the start of a vector for scalar assignment
//------------------------------------------------------------------------------
// Find pX and pX_end for the vector X (iQ_start:end, j), for a scalar
// assignment method, or a method iterating over all IxJ for a bitmap M or A.
// Used for the M and S matrices.
// lookup S (iQ_start:end, j)
#define GB_LOOKUP_VECTOR_S_FOR_IXJ(j,pS,pS_end,iQ_start) \
int64_t pS, pS_end ; \
GB_LOOKUP_VECTOR_S (j, pS, pS_end) ; \
if (iQ_start != 0) \
{ \
if (Si == NULL) \
{ \
/* S is full or bitmap */ \
pS += iQ_start ; \
} \
else \
{ \
/* S is sparse or hypersparse */ \
int64_t pright = pS_end - 1 ; \
GB_split_binary_search (iQ_start, Si, GB_Si_IS_32, \
&pS, &pright) ; \
} \
}
// lookup M (iQ_start:end, j)
#define GB_LOOKUP_VECTOR_M_FOR_IXJ(j,pM,pM_end,iQ_start) \
int64_t pM, pM_end ; \
GB_LOOKUP_VECTOR_M (j, pM, pM_end) ; \
if (iQ_start != 0) \
{ \
if (Mi == NULL) \
{ \
/* M is full or bitmap */ \
pM += iQ_start ; \
} \
else \
{ \
/* M is sparse or hypersparse */ \
int64_t pright = pM_end - 1 ; \
GB_split_binary_search (iQ_start, Mi, GB_Mi_IS_32, \
&pM, &pright) ; \
} \
}
//------------------------------------------------------------------------------
// GB_MIJ_BINARY_SEARCH_OR_DENSE_LOOKUP
//------------------------------------------------------------------------------
// mij = M(i,j)
#define GB_MIJ_BINARY_SEARCH_OR_DENSE_LOOKUP(i) \
bool mij ; \
if (GB_M_IS_BITMAP) \
{ \
/* M(:,j) is bitmap, no need for binary search */ \
int64_t pM = pM_start + i ; \
mij = Mb [pM] && GB_MCAST (Mx, pM, msize) ; \
} \
else if (mjdense) \
{ \
/* M(:,j) is dense, no need for binary search */ \
int64_t pM = pM_start + i ; \
mij = GB_MCAST (Mx, pM, msize) ; \
} \
else \
{ \
/* M(:,j) is sparse, binary search for M(i,j) */ \
int64_t pM = pM_start ; \
int64_t pright = pM_end - 1 ; \
bool found ; \
found = GB_binary_search (i, Mi, GB_Mi_IS_32, &pM, &pright) ; \
if (found) \
{ \
mij = GB_MCAST (Mx, pM, msize) ; \
} \
else \
{ \
mij = false ; \
} \
} \
//------------------------------------------------------------------------------
// GB_PHASE1_TASK_WRAPUP: wrapup for a task in phase 1
//------------------------------------------------------------------------------
// sum up the zombie count, and record the # of pending tuples for this task
#define GB_PHASE1_TASK_WRAPUP \
nzombies += task_nzombies ; \
Npending [taskid] = task_pending ;
//------------------------------------------------------------------------------
// GB_PENDING_CUMSUM: finalize zombies, count # pending tuples for all tasks
//------------------------------------------------------------------------------
#define GB_PENDING_CUMSUM \
C->nzombies = nzombies ; \
/* cumsum Npending for each task, and get total from all tasks */ \
GB_cumsum1_64 ((uint64_t *) Npending, ntasks) ; \
int64_t total_new_npending = Npending [ntasks] ; \
if (total_new_npending == 0) \
{ \
/* no pending tuples, so skip phase 2 */ \
GB_FREE_ALL ; \
ASSERT_MATRIX_OK (C, "C, no pending tuples ", GB0_Z) ; \
return (GrB_SUCCESS) ; \
} \
/* ensure C->Pending is large enough to handle total_new_npending */ \
/* more tuples. The type of Pending->x is atype, the type of A or */ \
/* the scalar. */ \
if (!GB_Pending_ensure (C, GB_C_ISO, atype, accum, total_new_npending, \
Werk)) \
{ \
GB_FREE_ALL ; \
return (GrB_OUT_OF_MEMORY) ; \
} \
GB_Pending Pending = C->Pending ; \
GB_CPendingi_DECLARE (Pending_i) ; GB_CPendingi_PTR (Pending_i, C) ; \
GB_CPendingj_DECLARE (Pending_j) ; GB_CPendingj_PTR (Pending_j, C) ; \
GB_A_TYPE *restrict Pending_x = (GB_A_TYPE *) Pending->x ; \
int64_t npending_orig = Pending->n ; \
bool pending_sorted = Pending->sorted ;
//------------------------------------------------------------------------------
// GB_START_PENDING_INSERTION: start insertion of pending tuples (phase 2)
//------------------------------------------------------------------------------
#define GB_START_PENDING_INSERTION \
bool task_sorted = true ; \
int64_t ilast = -1 ; \
int64_t jlast = -1 ; \
int64_t my_npending = Npending [taskid] ; \
int64_t task_pending = Npending [taskid+1] - my_npending ; \
if (task_pending == 0) continue ; \
my_npending += npending_orig ;
#define GB_GET_TASK_DESCRIPTOR_PHASE2 \
GB_GET_TASK_DESCRIPTOR ; \
GB_START_PENDING_INSERTION ;
//------------------------------------------------------------------------------
// GB_PENDING_INSERT_*: add (iC,jC,aij) or just (iC,aij) if Pending_j is NULL
//------------------------------------------------------------------------------
// GB_PENDING_INSERT_* is used by GB_subassign_* to insert a pending tuple,
// in phase 2. The list has already been reallocated after phase 1 to hold all
// the new pending tuples, so GB_Pending_realloc is not required. If C is iso,
// Pending->x is NULL.
// The type of Pending_x is always identical to the type of A, or the scalar,
// so no typecasting is required. Pending_x is NULL if C is iso.
// insert a scalar into Pending_x:
#undef GB_COPY_scalar_to_PENDING_X
#ifdef GB_GENERIC
#define GB_COPY_scalar_to_PENDING_X \
{ memcpy (Pending_x +(my_npending*asize), scalar, asize) ; }
#else
#define GB_COPY_scalar_to_PENDING_X \
{ Pending_x [my_npending] = (*((GB_A_TYPE *) scalar)) ; }
#endif
// insert A(i,j) into Pending_x:
#undef GB_COPY_aij_to_PENDING_X
#ifdef GB_GENERIC
#define GB_COPY_aij_to_PENDING_X \
{ memcpy (Pending_x +(my_npending*asize), \
(Ax + (GB_A_ISO ? 0 : ((pA)*asize))), asize) ; }
#else
#define GB_COPY_aij_to_PENDING_X \
{ Pending_x [my_npending] = Ax [GB_A_ISO ? 0 : (pA)] ; }
#endif
#define GB_PENDING_INSERT_aij GB_PENDING_INSERT (GB_COPY_aij_to_PENDING_X)
#define GB_PENDING_INSERT_scalar GB_PENDING_INSERT (GB_COPY_scalar_to_PENDING_X)
#define GB_PENDING_INSERT(copy_to_Pending_x) \
if (task_sorted) \
{ \
if (!((jlast < jC) || (jlast == jC && ilast <= iC))) \
{ \
task_sorted = false ; \
} \
} \
/* Pending_i [my_npending] = iC ; */ \
GB_ISET (Pending_i, my_npending, iC) ; \
if (Pending_j != NULL) \
{ \
/* Pending_j [my_npending] = jC ; */ \
GB_ISET (Pending_j, my_npending, jC) ; \
} \
if (Pending_x != NULL) copy_to_Pending_x ; \
my_npending++ ; \
ilast = iC ; \
jlast = jC ;
//------------------------------------------------------------------------------
// GB_PHASE2_TASK_WRAPUP: wrapup for a task in phase 2
//------------------------------------------------------------------------------
#define GB_PHASE2_TASK_WRAPUP \
pending_sorted = pending_sorted && task_sorted ; \
ASSERT (my_npending == npending_orig + Npending [taskid+1]) ;
//------------------------------------------------------------------------------
// GB_SUBASSIGN_WRAPUP: finalize the subassign method after phase 2
//------------------------------------------------------------------------------
// If pending_sorted is true, then the original pending tuples (if any) were
// sorted, and each task found that its tuples were also sorted. The
// boundaries between each task must now be checked.
#define GB_SUBASSIGN_WRAPUP \
if (pending_sorted) \
{ \
for (int taskid = 0 ; pending_sorted && taskid < ntasks ; taskid++) \
{ \
int64_t my_npending = Npending [taskid] ; \
int64_t task_pending = Npending [taskid+1] - my_npending ; \
my_npending += npending_orig ; \
if (task_pending > 0 && my_npending > 0) \
{ \
/* (i,j) is the first pending tuple for this task; check */ \
/* with the pending tuple just before it */ \
ASSERT (my_npending < npending_orig + total_new_npending) ; \
int64_t i = GB_IGET (Pending_i, my_npending) ; \
int64_t j = (Pending_j != NULL) ? \
GB_IGET (Pending_j, my_npending) : 0 ; \
int64_t ilast = GB_IGET (Pending_i, my_npending-1) ; \
int64_t jlast = (Pending_j != NULL) ? \
GB_IGET (Pending_j, my_npending-1) : 0 ; \
pending_sorted = pending_sorted && \
((jlast < j) || (jlast == j && ilast <= i)) ; \
} \
} \
} \
Pending->n += total_new_npending ; \
Pending->sorted = pending_sorted ; \
GB_FREE_ALL ; \
ASSERT_MATRIX_OK (C, "C with pending tuples", GB0_Z) ; \
return (GrB_SUCCESS) ;
//==============================================================================
// macros for bitmap_assign methods
//==============================================================================
#define GB_FREE_ALL_FOR_BITMAP \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
GB_WERK_POP (M_ek_slicing, int64_t) ; \
GB_FREE_MEMORY (&TaskList_IxJ, TaskList_IxJ_size) ;
//------------------------------------------------------------------------------
// GB_GET_C_A_SCALAR_FOR_BITMAP: get the C and A matrices and the scalar
//------------------------------------------------------------------------------
// C must be a bitmap matrix. Gets the C and A matrices, and the scalar, and
// declares workspace for M, A, and TaskList_IxJ.
#define GB_GET_C_A_SCALAR_FOR_BITMAP \
GrB_Info info ; \
/* workspace: */ \
GB_WERK_DECLARE (M_ek_slicing, int64_t) ; \
int M_ntasks = 0, M_nthreads = 0 ; \
GB_task_struct *TaskList_IxJ = NULL ; size_t TaskList_IxJ_size = 0 ; \
int ntasks_IxJ = 0, nthreads_IxJ = 0 ; \
GB_WERK_DECLARE (A_ek_slicing, int64_t) ; \
int A_ntasks = 0, A_nthreads = 0 ; \
/* C matrix: */ \
ASSERT_MATRIX_OK (C, "C for bitmap assign", GB0) ; \
ASSERT (GB_IS_BITMAP (C)) ; \
int8_t *Cb = C->b ; \
const bool C_iso = C->iso ; \
GB_C_TYPE *Cx = (GB_C_ISO) ? NULL : (GB_C_TYPE *) C->x ; \
const size_t csize = C->type->size ; \
const GB_Type_code ccode = C->type->code ; \
const int64_t Cvdim = C->vdim ; \
const int64_t Cvlen = C->vlen ; \
const int64_t vlen = Cvlen ; /* for GB_bitmap_assign_IxJ_template */ \
const int64_t cnzmax = Cvlen * Cvdim ; \
int64_t cnvals = C->nvals ; \
/* A matrix and scalar: */ \
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ; \
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ; \
GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ; \
const int8_t *Ab = NULL ; \
const GB_A_TYPE *Ax = NULL ; \
const bool A_iso = (GB_SCALAR_ASSIGN) ? false : A->iso ; \
const GrB_Type atype = (GB_SCALAR_ASSIGN) ? scalar_type : A->type ; \
const size_t asize = atype->size ; \
const GB_Type_code acode = atype->code ; \
int64_t Avlen ; \
if (!(GB_SCALAR_ASSIGN)) \
{ \
ASSERT_MATRIX_OK (A, "A for bitmap assign/subassign", GB0) ; \
Ab = A->b ; \
Ax = (GB_C_ISO) ? NULL : (GB_A_TYPE *) A->x ; \
Avlen = A->vlen ; \
} \
GB_DECLAREC (cwork) ; \
GB_CAST_FUNCTION (cast_A_to_C, ccode, acode) ; \
if (!GB_C_ISO) \
{ \
if (GB_SCALAR_ASSIGN) \
{ \
/* cwork = (ctype) scalar */ \
GB_COPY_scalar_to_cwork (cwork, scalar) ; \
} \
else if (GB_A_ISO) \
{ \
/* cwork = (ctype) Ax [0], typecast iso value of A into cwork */\
GB_COPY_aij_to_cwork (cwork, Ax, 0, true) ; \
} \
}
//------------------------------------------------------------------------------
// GB_SLICE_M_FOR_BITMAP: slice the mask matrix M
//------------------------------------------------------------------------------
#define GB_SLICE_M_FOR_BITMAP \
GB_GET_MASK \
GB_M_NHELD (M_nnz_held) ; \
GB_SLICE_MATRIX_WORK (M, 8, M_nnz_held + Mnvec, M_nnz_held) ;
//------------------------------------------------------------------------------
// GB_GET_ACCUM_FOR_BITMAP: get accum op and its related typecasting functions
//------------------------------------------------------------------------------
#define GB_GET_ACCUM_FOR_BITMAP \
GB_GET_ACCUM ; \
GB_DECLAREY (ywork) ; \
if (!GB_C_ISO) \
{ \
if (GB_SCALAR_ASSIGN) \
{ \
/* ywork = (ytype) scalar */ \
GB_COPY_scalar_to_ywork (ywork, scalar) ; \
} \
else if (GB_A_ISO) \
{ \
/* ywork = (ytype) Ax [0] */ \
GB_COPY_aij_to_ywork (ywork, Ax, 0, true) ; \
} \
}
#endif
|