1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
//------------------------------------------------------------------------------
// GB_subassign_07_template: C(I,J)<M> += scalar ; no S
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Method 07: C(I,J)<M> += scalar ; no S
// M: present
// Mask_struct: true or false
// Mask_comp: false
// C_replace: false
// accum: present
// A: scalar
// S: none
// C: not bitmap
// M: any sparsity
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GB_EMPTY_TASKLIST ;
GB_GET_C ; // C must not be bitmap
const bool may_see_zombies_phase1 = (C->nzombies > 0) ;
GB_GET_C_HYPER_HASH ;
GB_GET_MASK ;
GB_GET_ACCUM_SCALAR ;
//--------------------------------------------------------------------------
// Method 07: C(I,J)<M> += scalar ; no S
//--------------------------------------------------------------------------
// Time: Close to Optimal: same as Method 05.
// Method 05 and Method 07 are very similar. Also compare with Method 06n.
//--------------------------------------------------------------------------
// Parallel: slice M into coarse/fine tasks (Method 05, 06n, 07)
//--------------------------------------------------------------------------
GB_SUBASSIGN_ONE_SLICE (M) ; // M cannot be jumbled
//--------------------------------------------------------------------------
// phase 1: undelete zombies, update entries, and count pending tuples
//--------------------------------------------------------------------------
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(+:nzombies)
for (taskid = 0 ; taskid < ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
GB_GET_TASK_DESCRIPTOR_PHASE1 ;
//----------------------------------------------------------------------
// compute all vectors in this task
//----------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// get j, the kth vector of M
//------------------------------------------------------------------
int64_t j = GBh_M (Mh, k) ;
GB_GET_VECTOR_M ;
int64_t mjnz = pM_end - pM ;
if (mjnz == 0) continue ;
//------------------------------------------------------------------
// get jC, the corresponding vector of C
//------------------------------------------------------------------
GB_LOOKUP_VECTOR_jC ;
int64_t cjnz = pC_end - pC_start ;
bool cjdense = (cjnz == Cvlen) ;
//------------------------------------------------------------------
// C(I,jC)<M(:,j)> += scalar ; no S
//------------------------------------------------------------------
if (cjdense)
{
//--------------------------------------------------------------
// C(:,jC) is dense so the binary search of C is not needed
for ( ; pM < pM_end ; pM++)
{
//----------------------------------------------------------
// update C(iC,jC), but only if M(iA,j) allows it
//----------------------------------------------------------
bool mij = GBb_M (Mb, pM) && GB_MCAST (Mx, pM, msize) ;
if (mij)
{
int64_t iA = GBi_M (Mi, pM, Mvlen) ;
GB_iC_DENSE_LOOKUP ;
// ----[C A 1] or [X A 1]-------------------------------
// [C A 1]: action: ( =C+A ): apply accum
// [X A 1]: action: ( undelete ): zombie lives
GB_withaccum_C_A_1_scalar ;
}
}
}
else
{
//--------------------------------------------------------------
// C(:,jC) is sparse; use binary search for C
//--------------------------------------------------------------
for ( ; pM < pM_end ; pM++)
{
//----------------------------------------------------------
// update C(iC,jC), but only if M(iA,j) allows it
//----------------------------------------------------------
bool mij = GBb_M (Mb, pM) && GB_MCAST (Mx, pM, msize) ;
if (mij)
{
int64_t iA = GBi_M (Mi, pM, Mvlen) ;
// find C(iC,jC) in C(:,jC)
GB_iC_BINARY_SEARCH (may_see_zombies_phase1) ;
if (cij_found)
{
// ----[C A 1] or [X A 1]---------------------------
// [C A 1]: action: ( =C+A ): apply accum
// [X A 1]: action: ( undelete ): zombie lives
GB_withaccum_C_A_1_scalar ;
}
else
{
// ----[. A 1]--------------------------------------
// [. A 1]: action: ( insert )
task_pending++ ;
}
}
}
}
}
GB_PHASE1_TASK_WRAPUP ;
}
//--------------------------------------------------------------------------
// phase 2: insert pending tuples
//--------------------------------------------------------------------------
// All zombies might have just been brought back to life, so recheck the
// may_see_zombies condition.
GB_PENDING_CUMSUM ;
const bool may_see_zombies_phase2 = (C->nzombies > 0) ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(&&:pending_sorted)
for (taskid = 0 ; taskid < ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
GB_GET_TASK_DESCRIPTOR_PHASE2 ;
//----------------------------------------------------------------------
// compute all vectors in this task
//----------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// get j, the kth vector of M
//------------------------------------------------------------------
int64_t j = GBh_M (Mh, k) ;
GB_GET_VECTOR_M ;
int64_t mjnz = pM_end - pM ;
if (mjnz == 0) continue ;
//------------------------------------------------------------------
// get jC, the corresponding vector of C
//------------------------------------------------------------------
GB_LOOKUP_VECTOR_jC ;
bool cjdense = ((pC_end - pC_start) == Cvlen) ;
//------------------------------------------------------------------
// C(I,jC)<M(:,j)> += scalar ; no S
//------------------------------------------------------------------
if (!cjdense)
{
//--------------------------------------------------------------
// C(:,jC) is sparse; use binary search for C
//--------------------------------------------------------------
for ( ; pM < pM_end ; pM++)
{
//----------------------------------------------------------
// update C(iC,jC), but only if M(iA,j) allows it
//----------------------------------------------------------
bool mij = GBb_M (Mb, pM) && GB_MCAST (Mx, pM, msize) ;
if (mij)
{
int64_t iA = GBi_M (Mi, pM, Mvlen) ;
// find C(iC,jC) in C(:,jC)
GB_iC_BINARY_SEARCH (may_see_zombies_phase2) ;
if (!cij_found)
{
// ----[. A 1]--------------------------------------
// [. A 1]: action: ( insert )
GB_PENDING_INSERT_scalar ;
}
}
}
}
}
GB_PHASE2_TASK_WRAPUP ;
}
//--------------------------------------------------------------------------
// finalize the matrix and return result
//--------------------------------------------------------------------------
GB_SUBASSIGN_WRAPUP ;
}
|