1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
//------------------------------------------------------------------------------
// GB_subassign_08n_template: C(I,J)<M> += A ; no S
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Method 08n: C(I,J)<M> += A ; no S
// M: present
// Mask_struct: true or false
// Mask_comp: false
// C_replace: false
// accum: present
// A: matrix
// S: none
// C not bitmap; C can be full since no zombies are inserted in that case.
// If C is bitmap, then GB_bitmap_assign_M_accum is used instead.
// M, A: not bitmap; Method 08s is used instead if M or A are bitmap.
//------------------------------------------------------------------------------
// GB_PHASE1_ACTION
//------------------------------------------------------------------------------
// action to take for phase 1 when A(i,j) exists and M(i,j)=1
#define GB_PHASE1_ACTION \
{ \
if (cjdense) \
{ \
/* direct lookup of C(iC,jC) */ \
GB_iC_DENSE_LOOKUP ; \
/* ----[C A 1] or [X A 1]------------------------------- */ \
/* [C A 1]: action: ( =C+A ): apply accum */ \
/* [X A 1]: action: ( undelete ): zombie lives */ \
GB_withaccum_C_A_1_matrix ; \
} \
else \
{ \
/* binary search for C(iC,jC) in C(:,jC) */ \
GB_iC_BINARY_SEARCH (may_see_zombies_phase1) ; \
if (cij_found) \
{ \
/* ----[C A 1] or [X A 1]--------------------------- */ \
/* [C A 1]: action: ( =C+A ): apply accum */ \
/* [X A 1]: action: ( undelete ): zombie lives */ \
GB_withaccum_C_A_1_matrix ; \
} \
else \
{ \
/* ----[. A 1]-------------------------------------- */ \
/* [. A 1]: action: ( insert ) */ \
task_pending++ ; \
} \
} \
}
//------------------------------------------------------------------------------
// GB_PHASE2_ACTION
//------------------------------------------------------------------------------
// action to take for phase 2 when A(i,j) exists and M(i,j)=1
#define GB_PHASE2_ACTION \
{ \
ASSERT (!cjdense) ; \
{ \
/* binary search for C(iC,jC) in C(:,jC) */ \
GB_iC_BINARY_SEARCH (may_see_zombies_phase2) ; \
if (!cij_found) \
{ \
/* ----[. A 1]-------------------------------------- */ \
/* [. A 1]: action: ( insert ) */ \
GB_PENDING_INSERT_aij ; \
} \
} \
}
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GB_EMPTY_TASKLIST ;
GB_GET_C ; // C must not be bitmap
const bool may_see_zombies_phase1 = (C->nzombies > 0) ;
GB_GET_C_HYPER_HASH ;
GB_GET_MASK ;
GB_GET_ACCUM_MATRIX ;
//--------------------------------------------------------------------------
// Method 08n: C(I,J)<M> += A ; no S
//--------------------------------------------------------------------------
// Time: Close to optimal. Omega (sum_j (min (nnz (A(:,j)), nnz (M(:,j)))),
// since only the intersection of A.*M needs to be considered. If either
// M(:,j) or A(:,j) are very sparse compared to the other, then the shorter
// is traversed with a linear-time scan and a binary search is used for the
// other. If the number of nonzeros is comparable, a linear-time scan is
// used for both. Once two entries M(i,j)=1 and A(i,j) are found with the
// same index i, the entry A(i,j) is accumulated or inserted into C.
// The algorithm is very much like the eWise multiplication of A.*M, so the
// parallel scheduling relies on GB_emult_08_phase0 and GB_ewise_slice.
//--------------------------------------------------------------------------
// Parallel: slice the eWiseMult of Z=A.*M (Method 08n only)
//--------------------------------------------------------------------------
// Method 08n only. If C is sparse, it is sliced for a fine task, so that
// it can do a binary search via GB_iC_BINARY_SEARCH. But if C(:,jC) is
// dense, C(:,jC) is not sliced, so the fine task must do a direct lookup
// via GB_iC_DENSE_LOOKUP. Otherwise a race condition will occur.
// The Z matrix is not constructed, except for its hyperlist (Zh_shallow)
// and mapping to A and M.
// No matrix (C, M, or A) can be bitmap. C, M, A can be sparse/hyper/full,
// in any combination.
int64_t Znvec ;
GB_MDECL (Zh_shallow, const, u) ;
bool Zj_is_32 ;
GB_OK (GB_subassign_08n_slice (
&TaskList, &TaskList_size, &ntasks, &nthreads,
&Znvec, &Zh_shallow, &Z_to_A, &Z_to_A_size, &Z_to_M, &Z_to_M_size,
&Zj_is_32, C,
I, GB_I_IS_32, nI, GB_I_KIND, Icolon,
J, GB_J_IS_32, nJ, GB_J_KIND, Jcolon,
A, M, Werk)) ;
GB_IPTR (Zh_shallow, Zj_is_32) ;
GB_ALLOCATE_NPENDING_WERK ;
//--------------------------------------------------------------------------
// phase 1: undelete zombies, update entries, and count pending tuples
//--------------------------------------------------------------------------
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(+:nzombies)
for (taskid = 0 ; taskid < ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
GB_GET_TASK_DESCRIPTOR_PHASE1 ;
//----------------------------------------------------------------------
// compute all vectors in this task
//----------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// get A(:,j) and M(:,j)
//------------------------------------------------------------------
int64_t j = GBh (Zh_shallow, k) ;
int64_t pA = -1, pA_end = -1 ;
if (fine_task)
{
// A fine task operates on a slice of A(:,k)
pA = TaskList [taskid].pA ;
pA_end = TaskList [taskid].pA_end ;
}
else
{
// vectors are never sliced for a coarse task
int64_t kA = (Zh_shallow == Ah) ? k :
((Z_to_A == NULL) ? j : Z_to_A [k]) ;
if (kA >= 0)
{
pA = GBp_A (Ap, kA, Avlen) ;
pA_end = GBp_A (Ap, kA+1, Avlen) ;
}
}
int64_t pM = -1, pM_end = -1 ;
if (fine_task)
{
// A fine task operates on a slice of M(:,k)
pM = TaskList [taskid].pB ;
pM_end = TaskList [taskid].pB_end ;
}
else
{
// vectors are never sliced for a coarse task
int64_t kM = (Zh_shallow == Mh) ? k :
((Z_to_M == NULL) ? j : Z_to_M [k]) ;
if (kM >= 0)
{
pM = GBp_M (Mp, kM, Mvlen) ;
pM_end = GBp_M (Mp, kM+1, Mvlen) ;
}
}
//------------------------------------------------------------------
// quick checks for empty intersection of A(:,j) and M(:,j)
//------------------------------------------------------------------
int64_t ajnz = pA_end - pA ;
int64_t mjnz = pM_end - pM ;
if (ajnz == 0 || mjnz == 0) continue ;
int64_t iA_first = GBi_A (Ai, pA, Avlen) ;
int64_t iA_last = GBi_A (Ai, pA_end-1, Avlen) ;
int64_t iM_first = GBi_M (Mi, pM, Mvlen) ;
int64_t iM_last = GBi_M (Mi, pM_end-1, Mvlen) ;
if (iA_last < iM_first || iM_last < iA_first) continue ;
int64_t pM_start = pM ;
//------------------------------------------------------------------
// get jC, the corresponding vector of C
//------------------------------------------------------------------
GB_LOOKUP_VECTOR_jC ;
bool cjdense = (pC_end - pC_start == Cvlen) ;
//------------------------------------------------------------------
// C(I,jC)<M(:,j)> += A(:,j) ; no S
//------------------------------------------------------------------
if (ajnz > 32 * mjnz)
{
//--------------------------------------------------------------
// A(:,j) is much denser than M(:,j)
//--------------------------------------------------------------
for ( ; pM < pM_end ; pM++)
{
if (GB_MCAST (Mx, pM, msize))
{
int64_t iA = GBi_M (Mi, pM, Mvlen) ;
// find iA in A(:,j)
int64_t pright = pA_end - 1 ;
bool found ;
// FUTURE::: exploit dense A(:,j)
found = GB_binary_search (iA, Ai, GB_Ai_IS_32,
&pA, &pright) ;
if (found) GB_PHASE1_ACTION ;
}
}
}
else if (mjnz > 32 * ajnz)
{
//--------------------------------------------------------------
// M(:,j) is much denser than A(:,j)
//--------------------------------------------------------------
// FUTURE::: exploit dense mask
bool mjdense = false ;
for ( ; pA < pA_end ; pA++)
{
int64_t iA = GBi_A (Ai, pA, Avlen) ;
GB_MIJ_BINARY_SEARCH_OR_DENSE_LOOKUP (iA) ;
if (mij) GB_PHASE1_ACTION ;
}
}
else
{
//----------------------------------------------------------
// A(:,j) and M(:,j) have about the same # of entries
//----------------------------------------------------------
// linear-time scan of A(:,j) and M(:,j)
while (pA < pA_end && pM < pM_end)
{
int64_t iA = GBi_A (Ai, pA, Avlen) ;
int64_t iM = GBi_M (Mi, pM, Mvlen) ;
if (iA < iM)
{
// A(i,j) exists but not M(i,j)
pA++ ; // go to the next entry in A(:,j)
}
else if (iM < iA)
{
// M(i,j) exists but not A(i,j)
pM++ ; // go to the next entry in M(:,j)
}
else
{
// both A(i,j) and M(i,j) exist
if (GB_MCAST (Mx, pM, msize)) GB_PHASE1_ACTION ;
pA++ ; // go to the next entry in A(:,j)
pM++ ; // go to the next entry in M(:,j)
}
}
}
}
GB_PHASE1_TASK_WRAPUP ;
}
//--------------------------------------------------------------------------
// phase 2: insert pending tuples
//--------------------------------------------------------------------------
// All zombies might have just been brought back to life, so recheck the
// may_see_zombies condition.
GB_PENDING_CUMSUM ;
const bool may_see_zombies_phase2 = (C->nzombies > 0) ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1) \
reduction(&&:pending_sorted)
for (taskid = 0 ; taskid < ntasks ; taskid++)
{
//----------------------------------------------------------------------
// get the task descriptor
//----------------------------------------------------------------------
GB_GET_TASK_DESCRIPTOR_PHASE2 ;
//----------------------------------------------------------------------
// compute all vectors in this task
//----------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// get A(:,j) and M(:,j)
//------------------------------------------------------------------
int64_t j = GBh (Zh_shallow, k) ;
int64_t pA = -1, pA_end = -1 ;
if (fine_task)
{
// A fine task operates on a slice of A(:,k)
pA = TaskList [taskid].pA ;
pA_end = TaskList [taskid].pA_end ;
}
else
{
// vectors are never sliced for a coarse task
int64_t kA = (Zh_shallow == Ah) ? k :
((Z_to_A == NULL) ? j : Z_to_A [k]) ;
if (kA >= 0)
{
pA = GBp_A (Ap, kA, Avlen) ;
pA_end = GBp_A (Ap, kA+1, Avlen) ;
}
}
int64_t pM = -1, pM_end = -1 ;
if (fine_task)
{
// A fine task operates on a slice of M(:,k)
pM = TaskList [taskid].pB ;
pM_end = TaskList [taskid].pB_end ;
}
else
{
// vectors are never sliced for a coarse task
int64_t kM = (Zh_shallow == Mh) ? k :
((Z_to_M == NULL) ? j : Z_to_M [k]) ;
if (kM >= 0)
{
pM = GBp_M (Mp, kM, Mvlen) ;
pM_end = GBp_M (Mp, kM+1, Mvlen) ;
}
}
//------------------------------------------------------------------
// quick checks for empty intersection of A(:,j) and M(:,j)
//------------------------------------------------------------------
int64_t ajnz = pA_end - pA ;
int64_t mjnz = pM_end - pM ;
if (ajnz == 0 || mjnz == 0) continue ;
int64_t iA_first = GBi_A (Ai, pA, Avlen) ;
int64_t iA_last = GBi_A (Ai, pA_end-1, Avlen) ;
int64_t iM_first = GBi_M (Mi, pM, Mvlen) ;
int64_t iM_last = GBi_M (Mi, pM_end-1, Mvlen) ;
if (iA_last < iM_first || iM_last < iA_first) continue ;
int64_t pM_start = pM ;
//------------------------------------------------------------------
// get jC, the corresponding vector of C
//------------------------------------------------------------------
GB_LOOKUP_VECTOR_jC ;
bool cjdense = (pC_end - pC_start == Cvlen) ;
if (cjdense) continue ;
//------------------------------------------------------------------
// C(I,jC)<M(:,j)> += A(:,j) ; no S
//------------------------------------------------------------------
if (ajnz > 32 * mjnz)
{
//--------------------------------------------------------------
// A(:,j) is much denser than M(:,j)
//--------------------------------------------------------------
for ( ; pM < pM_end ; pM++)
{
if (GB_MCAST (Mx, pM, msize))
{
int64_t iA = GBi_M (Mi, pM, Mvlen) ;
// find iA in A(:,j)
int64_t pright = pA_end - 1 ;
bool found ;
// FUTURE::: exploit dense A(:,j)
found = GB_binary_search (iA, Ai, GB_Ai_IS_32,
&pA, &pright) ;
if (found) GB_PHASE2_ACTION ;
}
}
}
else if (mjnz > 32 * ajnz)
{
//--------------------------------------------------------------
// M(:,j) is much denser than A(:,j)
//--------------------------------------------------------------
// FUTURE::: exploit dense mask
bool mjdense = false ;
for ( ; pA < pA_end ; pA++)
{
int64_t iA = GBi_A (Ai, pA, Avlen) ;
GB_MIJ_BINARY_SEARCH_OR_DENSE_LOOKUP (iA) ;
if (mij) GB_PHASE2_ACTION ;
}
}
else
{
//----------------------------------------------------------
// A(:,j) and M(:,j) have about the same # of entries
//----------------------------------------------------------
// linear-time scan of A(:,j) and M(:,j)
while (pA < pA_end && pM < pM_end)
{
int64_t iA = GBi_A (Ai, pA, Avlen) ;
int64_t iM = GBi_M (Mi, pM, Mvlen) ;
if (iA < iM)
{
// A(i,j) exists but not M(i,j)
pA++ ; // go to the next entry in A(:,j)
}
else if (iM < iA)
{
// M(i,j) exists but not A(i,j)
pM++ ; // go to the next entry in M(:,j)
}
else
{
// both A(i,j) and M(i,j) exist
if (GB_MCAST (Mx, pM, msize)) GB_PHASE2_ACTION ;
pA++ ; // go to the next entry in A(:,j)
pM++ ; // go to the next entry in M(:,j)
}
}
}
}
GB_PHASE2_TASK_WRAPUP ;
}
//--------------------------------------------------------------------------
// finalize the matrix and return result
//--------------------------------------------------------------------------
GB_SUBASSIGN_WRAPUP ;
}
|