1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
//------------------------------------------------------------------------------
// GB_subassign_23_template: C += A where C is full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Method 23: C += A, where C is full
// M: NULL
// Mask_comp: false
// Mask_struct: ignored
// C_replace: false
// accum: present
// A: matrix
// S: none
// The type of C must match the type of x and z for the accum function, since
// C(i,j) = accum (C(i,j), A(i,j)) is handled. The generic case here can
// typecast A(i,j) but not C(i,j). The case for typecasting of C is handled by
// Method 04.
// C and A can have any sparsity structure, but C must be as-if-full.
#include "include/GB_unused.h"
#undef GB_FREE_ALL
#define GB_FREE_ALL \
{ \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
}
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
const bool A_is_bitmap = GB_IS_BITMAP (A) ;
const bool A_is_full = GB_IS_FULL (A) ;
const bool A_iso = A->iso ;
//--------------------------------------------------------------------------
// slice the A matrix
//--------------------------------------------------------------------------
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
int A_ntasks, A_nthreads ;
GB_A_NHELD (anz) ; // int64_t anz = GB_nnz_held (A) ;
double work = anz + A->nvec ;
if (GB_A_IS_BITMAP || GB_A_IS_FULL)
{
// C is full and A is bitmap or full: A_ek_slicing is not created.
A_nthreads = GB_nthreads (work, chunk, nthreads_max) ;
A_ntasks = 0 ; // unused
ASSERT (A_ek_slicing == NULL) ;
}
else
{
// create tasks to compute over the matrix A
GB_SLICE_MATRIX_WORK (A, 32, work, anz) ;
ASSERT (A_ek_slicing != NULL) ;
}
//--------------------------------------------------------------------------
// get C and A
//--------------------------------------------------------------------------
ASSERT (!C->iso) ;
const GB_A_TYPE *restrict Ax = (GB_A_TYPE *) A->x ;
GB_C_TYPE *restrict Cx = (GB_C_TYPE *) C->x ;
ASSERT (GB_IS_FULL (C)) ;
GB_C_NHELD (cnz) ; // const int64_t cnz = GB_nnz_held (C) ;
GB_DECLAREY (ywork) ;
if (GB_A_ISO)
{
// get the iso value of A and typecast it to Y
// ywork = (ytype) Ax [0]
GB_COPY_aij_to_ywork (ywork, Ax, 0, true) ;
}
if (GB_A_IS_BITMAP)
{
//----------------------------------------------------------------------
// C += A when C is full and A is bitmap
//----------------------------------------------------------------------
const int8_t *restrict Ab = A->b ;
int64_t p ;
#pragma omp parallel for num_threads(A_nthreads) schedule(static)
for (p = 0 ; p < cnz ; p++)
{
if (!Ab [p]) continue ;
// Cx [p] += (ytype) Ax [p], with typecasting
GB_ACCUMULATE_aij (Cx, p, Ax, p, GB_A_ISO, ywork, false) ;
}
}
else if (GB_A_IS_FULL)
{
//----------------------------------------------------------------------
// C += A when both C and A are ffull
//----------------------------------------------------------------------
int64_t p ;
#pragma omp parallel for num_threads(A_nthreads) schedule(static)
for (p = 0 ; p < cnz ; p++)
{
// Cx [p] += (ytype) Ax [p], with typecasting
GB_ACCUMULATE_aij (Cx, p, Ax, p, GB_A_ISO, ywork, false) ;
}
}
else
{
//----------------------------------------------------------------------
// C += A when C is full and A is sparse
//----------------------------------------------------------------------
ASSERT (GB_JUMBLED_OK (A)) ;
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;
const int64_t avlen = A->vlen ;
const int64_t Cvlen = C->vlen ;
bool A_jumbled = A->jumbled ;
const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
const int64_t *restrict klast_Aslice = kfirst_Aslice + A_ntasks ;
const int64_t *restrict pstart_Aslice = klast_Aslice + A_ntasks ;
int taskid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (taskid = 0 ; taskid < A_ntasks ; taskid++)
{
// if kfirst > klast then taskid does no work at all
int64_t kfirst = kfirst_Aslice [taskid] ;
int64_t klast = klast_Aslice [taskid] ;
//------------------------------------------------------------------
// C(:,kfirst:klast) += A(:,kfirst:klast)
//------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//--------------------------------------------------------------
// find the part of A(:,k) and C(:,k) for this task
//--------------------------------------------------------------
int64_t j = GBh_A (Ah, k) ;
int64_t pA_start = GB_IGET (Ap, k) ;
int64_t pA_end = GB_IGET (Ap, k+1) ;
GB_GET_PA (my_pA_start, my_pA_end, taskid, k,
kfirst, klast, pstart_Aslice, pA_start, pA_end) ;
bool ajdense = ((pA_end - pA_start) == Cvlen) ;
// pC points to the start of C(:,j)
int64_t pC = j * Cvlen ;
//--------------------------------------------------------------
// C(:,j) += A(:,j)
//--------------------------------------------------------------
if (ajdense && !A_jumbled)
{
//----------------------------------------------------------
// A(:,j) is dense
//----------------------------------------------------------
GB_PRAGMA_SIMD_VECTORIZE
for (int64_t pA = my_pA_start ; pA < my_pA_end ; pA++)
{
int64_t i = pA - pA_start ;
int64_t p = pC + i ;
// Cx [p] += (ytype) Ax [pA], with typecasting
GB_ACCUMULATE_aij (Cx, p, Ax, pA, GB_A_ISO, ywork,
false) ;
}
}
else
{
//----------------------------------------------------------
// A(:,j) is sparse
//----------------------------------------------------------
GB_PRAGMA_SIMD_VECTORIZE
for (int64_t pA = my_pA_start ; pA < my_pA_end ; pA++)
{
int64_t i = GB_IGET (Ai, pA) ;
int64_t p = pC + i ;
// Cx [p] += (ytype) Ax [pA], with typecasting
GB_ACCUMULATE_aij (Cx, p, Ax, pA, GB_A_ISO, ywork,
false) ;
}
}
}
}
}
GB_FREE_ALL ;
}
#undef GB_FREE_ALL
#define GB_FREE_ALL ;
|