1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
//------------------------------------------------------------------------------
// GB_subassign_25_template: C<M> = A where C is empty and A is dense
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Method 25: C(:,:)<M,s> = A ; C is empty, M structural, A bitmap/as-if-full
// M: present
// Mask_comp: false
// Mask_struct: true
// C_replace: effectively false (not relevant since C is empty)
// accum: NULL
// A: matrix
// S: none
// C and M are sparse or hypersparse. A can have any sparsity structure, even
// bitmap, but it must either be bitmap, or as-if-full. M may be jumbled. If
// so, C is constructed as jumbled. C is reconstructed with the same structure
// as M and can have any sparsity structure on input. The only constraint on C
// is nnz(C) is zero on input.
// C is iso if A is iso
// C<M> = A where C starts as empty, M is structural, and A is dense. The
// pattern of C is an exact copy of M. A is full, dense, or bitmap.
// M is sparse or hypersparse, and C is constructed with the same pattern as M.
#undef GB_FREE_ALL
#define GB_FREE_ALL \
{ \
GB_WERK_POP (M_ek_slicing, int64_t) ; \
}
{
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
const bool A_is_bitmap = GB_IS_BITMAP (A) ;
const bool A_iso = A->iso ;
ASSERT (GB_IS_FULL (A) || GB_A_IS_BITMAP) ;
//--------------------------------------------------------------------------
// Parallel: slice M into equal-sized chunks
//--------------------------------------------------------------------------
GB_WERK_DECLARE (M_ek_slicing, int64_t) ;
int M_nthreads, M_ntasks ;
GB_M_NHELD (M_nnz_held) ;
GB_SLICE_MATRIX_WORK (M, 8, M_nnz_held + M->nvec, M_nnz_held) ;
//--------------------------------------------------------------------------
// get C, M, and A
//--------------------------------------------------------------------------
GB_Ci_DECLARE (Ci, ) ; GB_Ci_PTR (Ci, C) ;
ASSERT (GB_IS_SPARSE (M) || GB_IS_HYPERSPARSE (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ;
GB_Mp_DECLARE (Mp, const) ; GB_Mp_PTR (Mp, M) ;
GB_Mh_DECLARE (Mh, const) ; GB_Mh_PTR (Mh, M) ;
GB_Mi_DECLARE (Mi, const) ; GB_Mi_PTR (Mi, M) ;
const int64_t Mvlen = M->vlen ;
const int8_t *restrict Ab = A->b ;
const int64_t avlen = A->vlen ;
bool C_iso = C->iso ;
ASSERT (C->iso == A->iso) ;
#ifdef GB_ISO_ASSIGN
ASSERT (C->iso) ;
#else
ASSERT (!C->iso) ;
const GB_A_TYPE *restrict Ax = (GB_A_TYPE *) A->x ;
GB_C_TYPE *restrict Cx = (GB_C_TYPE *) C->x ;
GB_DECLAREC (cwork) ;
if (GB_A_ISO)
{
// get the iso value of A and typecast to C->type
// cwork = (ctype) Ax [0]
// This is no longer used. If A is iso, so is C, and in that case,
// GB_ISO_ASSIGN is true and cwork is not used here.
ASSERT (GB_DEAD_CODE) ;
GB_COPY_aij_to_cwork (cwork, Ax, 0, true) ;
}
#endif
//--------------------------------------------------------------------------
// C<M> = A
//--------------------------------------------------------------------------
if (GB_A_IS_BITMAP)
{
//----------------------------------------------------------------------
// A is bitmap, so zombies can be created in C
//----------------------------------------------------------------------
int64_t nzombies = 0 ;
int tid ;
#pragma omp parallel for num_threads(M_nthreads) schedule(dynamic,1) \
reduction(+:nzombies)
for (tid = 0 ; tid < M_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Mslice [tid] ;
int64_t klast = klast_Mslice [tid] ;
int64_t task_nzombies = 0 ;
//------------------------------------------------------------------
// C<M(:,kfirst:klast)> = A(:,kfirst:klast)
//------------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//--------------------------------------------------------------
// find the part of M(:,k) to be operated on by this task
//--------------------------------------------------------------
int64_t j = GBh_M (Mh, k) ;
GB_GET_PA (pM_start, pM_end, tid, k, kfirst, klast,
pstart_Mslice, GB_IGET (Mp, k), GB_IGET (Mp, k+1)) ;
//--------------------------------------------------------------
// C<M(:,j)> = A(:,j)
//--------------------------------------------------------------
// M is hypersparse or sparse. C is the same as M.
// pA points to the start of A(:,j) since A is dense
int64_t pA = j * avlen ;
for (int64_t pM = pM_start ; pM < pM_end ; pM++)
{
int64_t i = GB_IGET (Mi, pM) ;
int64_t p = pA + i ;
if (Ab [p])
{
// C(i,j) = A(i,j)
#ifndef GB_ISO_ASSIGN
GB_COPY_aij_to_C (Cx, pM, Ax, p, GB_A_ISO, cwork,
GB_C_ISO) ;
#endif
}
else
{
// C(i,j) becomes a zombie
task_nzombies++ ;
i = GB_ZOMBIE (i) ;
GB_ISET (Ci, pM, i) ; // Ci [pM] = i
}
}
}
nzombies += task_nzombies ;
}
C->nzombies = nzombies ;
}
else
{
//----------------------------------------------------------------------
// A is full, so no zombies will appear in C
//----------------------------------------------------------------------
#ifndef GB_ISO_ASSIGN
{
int tid ;
#pragma omp parallel for num_threads(M_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < M_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Mslice [tid] ;
int64_t klast = klast_Mslice [tid] ;
//--------------------------------------------------------------
// C<M(:,kfirst:klast)> = A(:,kfirst:klast)
//--------------------------------------------------------------
for (int64_t k = kfirst ; k <= klast ; k++)
{
//----------------------------------------------------------
// find the part of M(:,k) to be operated on by this task
//----------------------------------------------------------
int64_t j = GBh_M (Mh, k) ;
GB_GET_PA (pM_start, pM_end, tid, k, kfirst, klast,
pstart_Mslice, GB_IGET (Mp, k), GB_IGET (Mp, k+1)) ;
//----------------------------------------------------------
// C<M(:,j)> = A(:,j)
//----------------------------------------------------------
// M is hypersparse or sparse. C is the same as M.
// pA points to the start of A(:,j) since A is dense
int64_t pA = j * avlen ;
GB_PRAGMA_SIMD_VECTORIZE
for (int64_t pM = pM_start ; pM < pM_end ; pM++)
{
// C(i,j) = A(i,j)
int64_t p = pA + GB_IGET (Mi, pM) ;
GB_COPY_aij_to_C (Cx, pM, Ax, p,
GB_A_ISO, cwork, GB_C_ISO) ;
}
}
}
}
#endif
}
GB_FREE_ALL ;
}
#undef GB_ISO_ASSIGN
#undef GB_FREE_ALL
#define GB_FREE_ALL ;
|