1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
|
//------------------------------------------------------------------------------
// GB_opaque.h: definitions of opaque objects
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#ifndef GB_OPAQUE_H
#define GB_OPAQUE_H
#define GB_OPAQUE(x) GB (GB_EVAL2 (_opaque__, x))
//------------------------------------------------------------------------------
// GB_void: like void, but valid for pointer arithmetic
//------------------------------------------------------------------------------
typedef unsigned char GB_void ;
//------------------------------------------------------------------------------
// type codes for GrB_Type
//------------------------------------------------------------------------------
typedef enum
{
// the 14 scalar types: 13 built-in types, and one user-defined type code
GB_ignore_code = 0,
GB_BOOL_code = 1, // 'logical' in @GrB interface
GB_INT8_code = 2,
GB_UINT8_code = 3,
GB_INT16_code = 4,
GB_UINT16_code = 5,
GB_INT32_code = 6,
GB_UINT32_code = 7,
GB_INT64_code = 8,
GB_UINT64_code = 9,
GB_FP32_code = 10, // float ('single' in @GrB interface)
GB_FP64_code = 11, // double
GB_FC32_code = 12, // float complex ('single complex' in @GrB)
GB_FC64_code = 13, // double complex
GB_UDT_code = 14 // void *, user-defined type
}
GB_Type_code ; // enumerated type code
//------------------------------------------------------------------------------
// opcodes for all operators
//------------------------------------------------------------------------------
typedef enum
{
GB_NOP_code = 0, // no operation
//==========================================================================
// unary operators
//==========================================================================
//--------------------------------------------------------------------------
// primary unary operators x=f(x)
//--------------------------------------------------------------------------
GB_ONE_unop_code = 1, // z = 1
GB_IDENTITY_unop_code = 2, // z = x
GB_AINV_unop_code = 3, // z = -x
GB_ABS_unop_code = 4, // z = abs(x) ; z is real if x is complex
GB_MINV_unop_code = 5, // z = 1/x ; special cases for bool and ints
GB_LNOT_unop_code = 6, // z = !x
GB_BNOT_unop_code = 7, // z = ~x (bitwise complement)
//--------------------------------------------------------------------------
// unary operators for floating-point types (real and complex)
//--------------------------------------------------------------------------
GB_SQRT_unop_code = 8, // z = sqrt (x)
GB_LOG_unop_code = 9, // z = log (x)
GB_EXP_unop_code = 10, // z = exp (x)
GB_SIN_unop_code = 11, // z = sin (x)
GB_COS_unop_code = 12, // z = cos (x)
GB_TAN_unop_code = 13, // z = tan (x)
GB_ASIN_unop_code = 14, // z = asin (x)
GB_ACOS_unop_code = 15, // z = acos (x)
GB_ATAN_unop_code = 16, // z = atan (x)
GB_SINH_unop_code = 17, // z = sinh (x)
GB_COSH_unop_code = 18, // z = cosh (x)
GB_TANH_unop_code = 19, // z = tanh (x)
GB_ASINH_unop_code = 20, // z = asinh (x)
GB_ACOSH_unop_code = 21, // z = acosh (x)
GB_ATANH_unop_code = 22, // z = atanh (x)
GB_SIGNUM_unop_code = 23, // z = signum (x)
GB_CEIL_unop_code = 24, // z = ceil (x)
GB_FLOOR_unop_code = 25, // z = floor (x)
GB_ROUND_unop_code = 26, // z = round (x)
GB_TRUNC_unop_code = 27, // z = trunc (x)
GB_EXP2_unop_code = 28, // z = exp2 (x)
GB_EXPM1_unop_code = 29, // z = expm1 (x)
GB_LOG10_unop_code = 30, // z = log10 (x)
GB_LOG1P_unop_code = 31, // z = log1P (x)
GB_LOG2_unop_code = 32, // z = log2 (x)
//--------------------------------------------------------------------------
// unary operators for real floating-point types
//--------------------------------------------------------------------------
GB_LGAMMA_unop_code = 33, // z = lgamma (x)
GB_TGAMMA_unop_code = 34, // z = tgamma (x)
GB_ERF_unop_code = 35, // z = erf (x)
GB_ERFC_unop_code = 36, // z = erfc (x)
GB_CBRT_unop_code = 37, // z = cbrt (x)
GB_FREXPX_unop_code = 38, // z = frexpx (x), mantissa of C11 frexp
GB_FREXPE_unop_code = 39, // z = frexpe (x), exponent of C11 frexp
//--------------------------------------------------------------------------
// unary operators for complex types only
//--------------------------------------------------------------------------
GB_CONJ_unop_code = 40, // z = conj (x)
//--------------------------------------------------------------------------
// unary operators where z is real and x is complex
//--------------------------------------------------------------------------
GB_CREAL_unop_code = 41, // z = creal (x)
GB_CIMAG_unop_code = 42, // z = cimag (x)
GB_CARG_unop_code = 43, // z = carg (x)
//--------------------------------------------------------------------------
// unary operators where z is bool and x is any floating-point type
//--------------------------------------------------------------------------
GB_ISINF_unop_code = 44, // z = isinf (x)
GB_ISNAN_unop_code = 45, // z = isnan (x)
GB_ISFINITE_unop_code = 46, // z = isfinite (x)
//--------------------------------------------------------------------------
// positional unary operators: z is int32 or int64, x is ignored
//--------------------------------------------------------------------------
GB_POSITIONI_unop_code = 47, // z = position_i(A(i,j)) == i
GB_POSITIONI1_unop_code = 48, // z = position_i1(A(i,j)) == i+1
GB_POSITIONJ_unop_code = 49, // z = position_j(A(i,j)) == j
GB_POSITIONJ1_unop_code = 50, // z = position_j1(A(i,j)) == j+1
GB_USER_unop_code = 51,
// true if opcode is for a GrB_UnaryOp
#define GB_IS_UNARYOP_CODE(opcode) \
((opcode) >= GB_ONE_unop_code && \
(opcode) <= GB_USER_unop_code)
// true if opcode is for a GrB_UnaryOp positional operator
#define GB_IS_BUILTIN_UNOP_CODE_POSITIONAL(opcode) \
((opcode) >= GB_POSITIONI_unop_code && \
(opcode) <= GB_POSITIONJ1_unop_code)
//==========================================================================
// index_unary operators
//==========================================================================
// operator codes used in GrB_IndexUnaryOp structures
// Result is INT32 or INT64, depending on i and/or j, and thunk:
GB_ROWINDEX_idxunop_code = 52, // (i+thunk): row index - thunk
GB_COLINDEX_idxunop_code = 53, // (j+thunk): col index - thunk
GB_DIAGINDEX_idxunop_code = 54, // (j-(i+thunk)): diag index + thunk
GB_FLIPDIAGINDEX_idxunop_code = 55, // (i-(j+thunk)), internal use only
// Result is BOOL, depending on i and/or j, and thunk:
GB_TRIL_idxunop_code = 56, // (j <= (i+thunk)): tril (A,thunk)
GB_TRIU_idxunop_code = 57, // (j >= (i+thunk)): triu (A,thunk)
GB_DIAG_idxunop_code = 58, // (j == (i+thunk)): diag(A,thunk)
GB_OFFDIAG_idxunop_code = 59, // (j != (i+thunk)): offdiag(A,thunk)
GB_COLLE_idxunop_code = 60, // (j <= thunk): A (:,0:thunk)
GB_COLGT_idxunop_code = 61, // (j > thunk): A (:,thunk+1:ncols-1)
GB_ROWLE_idxunop_code = 62, // (i <= thunk): A (0:thunk,:)
GB_ROWGT_idxunop_code = 63, // (i > thunk): A (thunk+1:nrows-1,:)
// Result is BOOL, depending on whether or not A(i,j) is a zombie
GB_NONZOMBIE_idxunop_code = 64,
// Result is BOOL, depending on the value aij and thunk:
GB_VALUENE_idxunop_code = 65, // (aij != thunk)
GB_VALUEEQ_idxunop_code = 66, // (aij == thunk)
GB_VALUEGT_idxunop_code = 67, // (aij > thunk)
GB_VALUEGE_idxunop_code = 68, // (aij >= thunk)
GB_VALUELT_idxunop_code = 69, // (aij < thunk)
GB_VALUELE_idxunop_code = 70, // (aij <= thunk)
GB_USER_idxunop_code = 71,
// true if opcode is for a GrB_IndexUnaryOp
#define GB_IS_INDEXUNARYOP_CODE(opcode) \
((opcode) >= GB_ROWINDEX_idxunop_code && \
(opcode) <= GB_USER_idxunop_code)
// true if opcode is for a GrB_IndexUnaryOp positional operator
#define GB_IS_INDEXUNARYOP_CODE_POSITIONAL(opcode) \
((opcode) >= GB_ROWINDEX_idxunop_code && \
(opcode) <= GB_ROWGT_idxunop_code)
//==========================================================================
// binary operators
//==========================================================================
//--------------------------------------------------------------------------
// binary ops for 14 valid monoids, including user-defined (72 to 85):
//--------------------------------------------------------------------------
GB_USER_binop_code = 72, // user defined binary op
GB_ANY_binop_code = 73, // z = x or y, selected arbitrarily
GB_MIN_binop_code = 74, // z = min(x,y)
GB_MAX_binop_code = 75, // z = max(x,y)
GB_PLUS_binop_code = 76, // z = x + y
GB_TIMES_binop_code = 77, // z = x * y
GB_LOR_binop_code = 78, // z = (x != 0) || (y != 0)
GB_LAND_binop_code = 79, // z = (x != 0) && (y != 0)
GB_LXOR_binop_code = 80, // z = (x != 0) != (y != 0)
GB_EQ_binop_code = 81, // z = (x == y), is LXNOR for bool
GB_BOR_binop_code = 82, // z = (x | y), bitwise or
GB_BAND_binop_code = 83, // z = (x & y), bitwise and
GB_BXOR_binop_code = 84, // z = (x ^ y), bitwise xor
GB_BXNOR_binop_code = 85, // z = ~(x ^ y), bitwise xnor
//--------------------------------------------------------------------------
// other binary operators
//--------------------------------------------------------------------------
GB_NE_binop_code = 86, // z = (x != y)
GB_FIRST_binop_code = 87, // z = x
GB_SECOND_binop_code = 88, // z = y
GB_PAIR_binop_code = 89, // z = 1
GB_MINUS_binop_code = 90, // z = x - y
GB_RMINUS_binop_code = 91, // z = y - x
GB_DIV_binop_code = 92, // z = x / y
GB_RDIV_binop_code = 93, // z = y / x
GB_POW_binop_code = 94, // z = pow (x,y)
GB_ISEQ_binop_code = 95, // z = (x == y)
GB_ISNE_binop_code = 96, // z = (x != y)
GB_ISGT_binop_code = 97, // z = (x > y)
GB_ISLT_binop_code = 98, // z = (x < y)
GB_ISGE_binop_code = 99, // z = (x >= y)
GB_ISLE_binop_code = 100, // z = (x <= y)
GB_BGET_binop_code = 101, // z = bitget (x,y)
GB_BSET_binop_code = 102, // z = bitset (x,y)
GB_BCLR_binop_code = 103, // z = bitclr (x,y)
GB_BSHIFT_binop_code = 104, // z = bitshift (x,y)
GB_GT_binop_code = 105, // z = (x > y)
GB_LT_binop_code = 106, // z = (x < y)
GB_GE_binop_code = 107, // z = (x >= y)
GB_LE_binop_code = 108, // z = (x <= y)
GB_ATAN2_binop_code = 109, // z = atan2 (x,y)
GB_HYPOT_binop_code = 110, // z = hypot (x,y)
GB_FMOD_binop_code = 111, // z = fmod (x,y)
GB_REMAINDER_binop_code = 112, // z = remainder (x,y)
GB_COPYSIGN_binop_code = 113, // z = copysign (x,y)
GB_LDEXP_binop_code = 114, // z = ldexp (x,y)
GB_CMPLX_binop_code = 115, // z = cmplx (x,y)
//--------------------------------------------------------------------------
// built-in positional binary operators: z is int64, x and y are ignored
//--------------------------------------------------------------------------
GB_FIRSTI_binop_code = 116, // z = first_i(A(i,j),y) == i
GB_FIRSTI1_binop_code = 117, // z = first_i1(A(i,j),y) == i+1
GB_FIRSTJ_binop_code = 118, // z = first_j(A(i,j),y) == j
GB_FIRSTJ1_binop_code = 119, // z = first_j1(A(i,j),y) == j+1
GB_SECONDI_binop_code = 120, // z = second_i(x,B(i,j)) == i
GB_SECONDI1_binop_code = 121, // z = second_i1(x,B(i,j)) == i+1
GB_SECONDJ_binop_code = 122, // z = second_j(x,B(i,j)) == j
GB_SECONDJ1_binop_code = 123, // z = second_j1(x,B(i,j)) == j+1
// true if opcode is for a GrB_BinaryOp
#define GB_IS_BINARYOP_CODE(opcode) \
((opcode) >= GB_USER_binop_code && \
(opcode) <= GB_SECONDJ1_binop_code)
// true if opcode is for a GrB_BinaryOp positional operator
#define GB_IS_BUILTIN_BINOP_CODE_POSITIONAL(opcode) \
((opcode) >= GB_FIRSTI_binop_code && \
(opcode) <= GB_SECONDJ1_binop_code)
//--------------------------------------------------------------------------
// index binary operators:
//--------------------------------------------------------------------------
GB_USER_idxbinop_code = 124,
// true if opcode is for a GxB_IndexBinaryOp
#define GB_IS_INDEXBINARYOP_CODE(opcode) ((opcode) == GB_USER_idxbinop_code)
//==========================================================================
// built-in GxB_SelectOp operators (DEPRECATED: do not use)
//==========================================================================
// built-in positional select operators: thunk optional; defaults to zero
GB_TRIL_selop_code = 125,
GB_TRIU_selop_code = 126,
GB_DIAG_selop_code = 127,
GB_OFFDIAG_selop_code = 128,
// built-in select operators, no thunk used
GB_NONZERO_selop_code = 129,
GB_EQ_ZERO_selop_code = 130,
GB_GT_ZERO_selop_code = 131,
GB_GE_ZERO_selop_code = 132,
GB_LT_ZERO_selop_code = 133,
GB_LE_ZERO_selop_code = 134,
// built-in select operators, thunk optional; defaults to zero
GB_NE_THUNK_selop_code = 135,
GB_EQ_THUNK_selop_code = 136,
GB_GT_THUNK_selop_code = 137,
GB_GE_THUNK_selop_code = 138,
GB_LT_THUNK_selop_code = 139,
GB_LE_THUNK_selop_code = 140
// true if opcode is for a GxB_SelectOp
#define GB_IS_SELECTOP_CODE(opcode) \
((opcode) >= GB_TRIL_selop_code && (opcode) <= GB_LE_THUNK_selop_code)
// true if opcode is for a GxB_SelectOp positional operator
#define GB_IS_SELECTOP_CODE_POSITIONAL(opcode) \
((opcode) >= GB_TRIL_selop_code && \
(opcode) <= GB_OFFDIAG_selop_code)
}
GB_Opcode ;
// true if the opcode is a positional operator of any kind
#define GB_OPCODE_IS_POSITIONAL(opcode) \
(GB_IS_BUILTIN_UNOP_CODE_POSITIONAL (opcode) || \
GB_IS_INDEXUNARYOP_CODE_POSITIONAL (opcode) || \
GB_IS_INDEXBINARYOP_CODE (opcode) || \
GB_IS_BUILTIN_BINOP_CODE_POSITIONAL (opcode) || \
GB_IS_SELECTOP_CODE_POSITIONAL (opcode))
// true if the op is a unary or binary positional operator
#define GB_OP_IS_POSITIONAL(op) \
(((op) == NULL) ? false : GB_OPCODE_IS_POSITIONAL ((op)->opcode))
//------------------------------------------------------------------------------
// opaque content of GraphBLAS objects
//------------------------------------------------------------------------------
// GB_MAGIC is an arbitrary number that is placed inside each object when it is
// initialized, as a way of detecting uninitialized objects.
#define GB_MAGIC 0x72657473786f62ULL
// The magic number is set to GB_FREED when the object is freed, as a way of
// helping to detect dangling pointers.
#define GB_FREED 0x6c6c756e786f62ULL
// The value is set to GB_MAGIC2 when the object has been allocated but cannot
// yet be used in most methods and operations. Currently this is used only for
// when A->p array is allocated but not initialized.
#define GB_MAGIC2 0x7265745f786f62ULL
// Nearly all GraphBLAS objects contain the same first 4 items (except for
// GB_Global_opaque, which has just the first 2).
struct GB_Type_opaque // content of GrB_Type
{
int64_t magic ; // for detecting uninitialized objects
size_t header_size ; // size of the malloc'd block for this struct, or 0
// ---------------------//
char *user_name ; // user name for GrB_get/GrB_set
size_t user_name_size ; // allocated size of user_name for GrB_get/GrB_set
// ---------------------//
size_t size ; // size of the type
GB_Type_code code ; // the type code
int32_t name_len ; // length of JIT C name; 0 for builtin
char name [GxB_MAX_NAME_LEN] ; // JIT C name of the type
char *defn ; // type definition
size_t defn_size ; // allocated size of the definition
uint64_t hash ; // if 0, type is builtin.
// if UINT64_MAX, the type cannot be JIT'd.
} ;
struct GB_UnaryOp_opaque // content of GrB_UnaryOp
{
#include "include/GB_Operator_content.h"
} ;
struct GB_IndexUnaryOp_opaque // content of GrB_IndexUnaryOp
{
#include "include/GB_Operator_content.h"
} ;
struct GB_BinaryOp_opaque // content of GrB_BinaryOp
{
#include "include/GB_Operator_content.h"
} ;
struct GB_IndexBinaryOp_opaque // content of GxB_IndexBinaryOp
{
#include "include/GB_Operator_content.h"
} ;
struct GB_SelectOp_opaque // content of GxB_SelectOp
{
#include "include/GB_Operator_content.h"
} ;
struct GB_Operator_opaque // content of GB_Operator
{
#include "include/GB_Operator_content.h"
} ;
// Any GrB_UnaryOp, GrB_IndexUnaryOp, GrB_BinaryOp, or GxB_SelectOp can be
// typecasted to a generic GB_Operator object, which is only used internally.
typedef struct GB_Operator_opaque *GB_Operator ;
struct GB_Monoid_opaque // content of GrB_Monoid
{
int64_t magic ; // for detecting uninitialized objects
size_t header_size ; // size of the malloc'd block for this struct, or 0
// ---------------------//
char *user_name ; // user name for GrB_get/GrB_set
size_t user_name_size ; // allocated size of user_name for GrB_get/GrB_set
// ---------------------//
GrB_BinaryOp op ; // binary operator of the monoid
void *identity ; // identity of the monoid; type is op->ztype
void *terminal ; // early-exit (NULL if no value); type is op->ztype
size_t identity_size ; // allocated size of identity, or 0
size_t terminal_size ; // allocated size of terminal, or 0
uint64_t hash ; // if 0, monoid uses only builtin ops and types.
// if UINT64_MAX, the monoid cannot be JIT'd.
} ;
struct GB_Semiring_opaque // content of GrB_Semiring
{
int64_t magic ; // for detecting uninitialized objects
size_t header_size ; // size of the malloc'd block for this struct, or 0
// ---------------------//
char *user_name ; // user name for GrB_get/GrB_set
size_t user_name_size ; // allocated size of user_name for GrB_get/GrB_set
// ---------------------//
GrB_Monoid add ; // add operator of the semiring
GrB_BinaryOp multiply ; // multiply operator of the semiring
char *name ; // name of the semiring; NULL for builtin
int32_t name_len ; // length of name; 0 for builtin
size_t name_size ; // allocated size of the name
uint64_t hash ; // if 0, semiring uses only builtin ops and types
} ;
struct GB_Descriptor_opaque // content of GrB_Descriptor
{
// first 6 items exactly match GrB_Matrix, GrB_Vector, GrB_Scalar structs:
int64_t magic ; // for detecting uninitialized objects
size_t header_size ; // size of the malloc'd block for this struct, or 0
// ---------------------//
char *user_name ; // user name for GrB_get/GrB_set
size_t user_name_size ; // allocated size of user_name for GrB_get/GrB_set
// ---------------------//
char *logger ; // error logger string
size_t logger_size ; // size of the malloc'd block for logger, or 0
// ---------------------//
// specific to the descriptor struct:
GrB_Desc_Value out ; // output descriptor
GrB_Desc_Value mask ; // mask descriptor
GrB_Desc_Value in0 ; // first input descriptor (A for C=A*B, for example)
GrB_Desc_Value in1 ; // second input descriptor (B for C=A*B)
GrB_Desc_Value axb ; // for selecting the method for C=A*B
int compression ; // compression method for GxB_Matrix_serialize
bool do_sort ; // if nonzero, do the sort in GrB_mxm
int import ; // if zero (default), trust input data
int row_list ; // how to use the row index list, I
int col_list ; // how to use the col index list, J
int val_list ; // how to use the value list, X
} ;
struct GB_Context_opaque // content of GxB_Context
{
int64_t magic ; // for detecting uninitialized objects
size_t header_size ; // size of the malloc'd block for this struct, or 0
// ---------------------//
char *user_name ; // user name for GrB_get/GrB_set
size_t user_name_size ; // allocated size of user_name for GrB_get/GrB_set
// ---------------------//
// OpenMP thread(s):
double chunk ; // chunk size for # of threads for small problems
int nthreads_max ; // max # threads to use in this call to GraphBLAS
// GPU:
int gpu_id ; // if negative: use the CPU only; do not use a GPU
// if >= 0: then use GPU gpu_id
} ;
//------------------------------------------------------------------------------
// GB_Pending data structure: for scalars, vectors, and matrices
//------------------------------------------------------------------------------
// Pending tuples are a list of unsorted (i,j,x) tuples that have not yet been
// added to a matrix. The indices Pending->i and Pending->j are 32/64 bit, as
// determined by A->i_is_32 and A->j_is_32, respectively.
struct GB_Pending_struct // list of pending tuples for a matrix
{
size_t header_size ; // size of the malloc'd block for this struct, or 0
int64_t n ; // number of pending tuples to add to matrix
int64_t nmax ; // size of i,j,x
bool sorted ; // true if pending tuples are in sorted order
void *i ; // row indices of pending tuples
size_t i_size ;
void *j ; // col indices of pending tuples; NULL if A->vdim <= 1
size_t j_size ;
GB_void *x ; // values of pending tuples
size_t x_size ;
GrB_Type type ; // the type of x
size_t size ; // type->size
GrB_BinaryOp op ; // operator to assemble pending tuples
} ;
typedef struct GB_Pending_struct *GB_Pending ;
//------------------------------------------------------------------------------
// scalar, vector, and matrix types
//------------------------------------------------------------------------------
// true if A is bitmap
#define GB_IS_BITMAP(A) ((A) != NULL && ((A)->b != NULL))
// true if A is full (but not bitmap)
#define GB_IS_FULL(A) \
((A) != NULL && (A)->h == NULL && (A)->p == NULL && (A)->i == NULL \
&& (A)->b == NULL)
// true if A is hypersparse
#define GB_IS_HYPERSPARSE(A) ((A) != NULL && ((A)->h != NULL))
// true if A is sparse (but not hypersparse)
#define GB_IS_SPARSE(A) ((A) != NULL && ((A)->h == NULL) && (A)->p != NULL)
struct GB_Scalar_opaque // content of GrB_Scalar: 1-by-1 standard CSC matrix
{
#include "include/GB_Matrix_content.h"
} ;
struct GB_Vector_opaque // content of GrB_Vector: m-by-1 standard CSC matrix
{
#include "include/GB_Matrix_content.h"
} ;
struct GB_Matrix_opaque // content of GrB_Matrix
{
#include "include/GB_Matrix_content.h"
} ;
//------------------------------------------------------------------------------
// Accessing the content of a scalar, vector, or matrix
//------------------------------------------------------------------------------
// A GrB_Matrix has three different types of integers:
//
// (1) A->p can be uint32_t or uint64_t, as determined by A->p_is_32.
//
// (2) These types are all determined by A->i_is_32:
// A->i can be int32_t or int64_t (signed, for flagging zombies: default)
// A->i can be uint32_t or uint64_t (unsigned, if no zombies appear)
//
// (3) These types are all determined by A->j_is_32:
// A->h can be uint32_t or uint64_t
// A->Y->p can be uint32_t or uint64_t
// A->Y->i can be uint32_t or uint64_t (never has zombies)
// A->Y->x can be uint32_t or uint64_t
// For examples on how these macros expand, see Source/math/include/GB_zombie.h.
// helper macro: declare a 32/64-bit integer array I
#define GB_MDECL(I,const,u) \
const void *I = NULL ; \
const u ## int32_t *restrict I ## 32 = NULL ; \
const u ## int64_t *restrict I ## 64 = NULL
// assign to a type-specific pointer from a void pointer, 32/64 bit
#define GB_IPTR(I,is_32) \
I ## 32 = (is_32) ? I : NULL ; \
I ## 64 = (is_32) ? NULL : I
// general method for getting an entry from the Ah array of a matrix; used for
// generic kernels, and JIT kernels for hyperlist arrays created inside the
// kernel (assign JIT kernels only)
#define GBh(Ah,k) \
((Ah ## 32) ? Ah ## 32 [k] : \
((Ah ## 64) ? Ah ## 64 [k] : \
(k)))
#ifndef GB_JIT_KERNEL
//--------------------------------------------------------------------------
// for mainline, Factory, and generic kernels
//--------------------------------------------------------------------------
// GB_IGET: get I [k] for a 32/64-bit integer array I
#define GB_IGET(I,k) (I ## 32 ? I ## 32 [k] : I ## 64 [k])
// GB_ISET: set I [k] for a 32/64-bit integer array I
#define GB_ISET(I,k,i) \
{ if (I ## 64) { I ## 64 [k] = (i) ; } else { I ## 32 [k] = (i) ; } }
// GB_IINC: increment I [k] for a 32/64-bit integer array I
#define GB_IINC(I,k,i) \
{ if (I ## 64) { I ## 64 [k] += (i) ; } else { I ## 32 [k] += (i) ; } }
// GB_IADDR: &(I [k]) for a 32/64-bit integer array I
#define GB_IADDR(I,k) (I ## 32 ? \
((void *) (I ## 32 + k)) : \
((void *) (I ## 64 + k)))
// helper macro: declare a 32/64-bit integer array I
#define GB_IDECL(I,const,u) \
const u ## int32_t *restrict I ## 32 = NULL ; \
const u ## int64_t *restrict I ## 64 = NULL
// helper macro: get a 32/64-bit pointer from a matrix
#define GB_GET_MATRIX_PTR(I,A,is_32,component) \
I = (A) ? A->component : NULL ; \
I ## 32 = (A) ? (A->is_32 ? I : NULL) : NULL ; \
I ## 64 = (A) ? (A->is_32 ? NULL : I) : NULL
// helper macro: get a 32/64-bit pointer from a matrix hyper_hash. The
// integer types of A->Y->[pix] are defined by A->j_is_32.
#define GB_GET_HYPER_PTR(I,A,pix) \
I = (A && A->Y) ? A->Y->pix : NULL ; \
I ## 32 = (A && A->Y) ? (A->j_is_32 ? A->Y->pix : NULL) : NULL ; \
I ## 64 = (A && A->Y) ? (A->j_is_32 ? NULL : A->Y->pix) : NULL
// helper macros: get 32/64-bit pointers from a matrix Pending object. The
// integer types of A->Pending->[ij] are defined by A->i_is_32 and
// A->j_is_32, respectively. A->Pending must be non-NULL.
#define GB_GET_PENDINGi_PTR(I,A) \
I = A->Pending->i ; \
I ## 32 = (A->i_is_32 ? A->Pending->i : NULL) ; \
I ## 64 = (A->i_is_32 ? NULL : A->Pending->i)
#define GB_GET_PENDINGj_PTR(I,A) \
I = A->Pending->j ; \
I ## 32 = (A->j_is_32 ? A->Pending->j : NULL) ; \
I ## 64 = (A->j_is_32 ? NULL : A->Pending->j)
// general method for getting an entry from the Ap array of a matrix
#define GBp(Ap,k,vlen) \
((Ap ## 32) ? Ap ## 32 [k] : \
((Ap ## 64) ? Ap ## 64 [k] : \
((k) * (vlen))))
// general method for getting an entry from the Ai array of a matrix
#define GBi(Ai,p,vlen) \
((Ai ## 32) ? Ai ## 32 [p] : \
((Ai ## 64) ? Ai ## 64 [p] : \
((p) % (vlen))))
// general method for getting an entry from the Ab array of a matrix
#define GBb(Ab,p) ((Ab) ? Ab [p] : 1)
// for declaring pointers for specific matrices (C, M, A, B, S, R, Z):
// C matrix:
#define GB_Cp_DECLARE(Cp,const) GB_MDECL (Cp, const, u)
#define GB_Ch_DECLARE(Ch,const) GB_MDECL (Ch, const, u)
#define GB_Ci_DECLARE(Ci,const) GB_MDECL (Ci, const, )
#define GB_Ci_DECLARE_U(Ci,const) GB_MDECL (Ci, const, u)
#define GB_CYp_DECLARE(C_Yp,const) GB_MDECL (C_Yp, const, u)
#define GB_CYi_DECLARE(C_Yi,const) GB_MDECL (C_Yi, const, u)
#define GB_CYx_DECLARE(C_Yx,const) GB_MDECL (C_Yx, const, u)
#define GB_CPendingi_DECLARE(Pending_i) GB_MDECL (Pending_i, , u)
#define GB_CPendingj_DECLARE(Pending_j) GB_MDECL (Pending_j, , u)
// M matrix:
#define GB_Mp_DECLARE(Mp,const) GB_MDECL (Mp, const, u)
#define GB_Mh_DECLARE(Mh,const) GB_MDECL (Mh, const, u)
#define GB_Mi_DECLARE(Mi,const) GB_MDECL (Mi, const, )
#define GB_Mi_DECLARE_U(Mi,const) GB_MDECL (Mi, const, u)
#define GB_MYp_DECLARE(M_Yp,const) GB_MDECL (M_Yp, const, u)
#define GB_MYi_DECLARE(M_Yi,const) GB_MDECL (M_Yi, const, u)
#define GB_MYx_DECLARE(M_Yx,const) GB_MDECL (M_Yx, const, u)
// A matrix:
#define GB_Ap_DECLARE(Ap,const) GB_MDECL (Ap, const, u)
#define GB_Ah_DECLARE(Ah,const) GB_MDECL (Ah, const, u)
#define GB_Ai_DECLARE(Ai,const) GB_MDECL (Ai, const, )
#define GB_Ai_DECLARE_U(Ai,const) GB_MDECL (Ai, const, u)
#define GB_AYp_DECLARE(A_Yp,const) GB_MDECL (A_Yp, const, u)
#define GB_AYi_DECLARE(A_Yi,const) GB_MDECL (A_Yi, const, u)
#define GB_AYx_DECLARE(A_Yx,const) GB_MDECL (A_Yx, const, u)
// B matrix:
#define GB_Bp_DECLARE(Bp,const) GB_MDECL (Bp, const, u)
#define GB_Bh_DECLARE(Bh,const) GB_MDECL (Bh, const, u)
#define GB_Bi_DECLARE(Bi,const) GB_MDECL (Bi, const, )
#define GB_Bi_DECLARE_U(Bi,const) GB_MDECL (Bi, const, u)
#define GB_BYp_DECLARE(B_Yp,const) GB_MDECL (B_Yp, const, u)
#define GB_BYi_DECLARE(B_Yi,const) GB_MDECL (B_Yi, const, u)
#define GB_BYx_DECLARE(B_Yx,const) GB_MDECL (B_Yx, const, u)
// S matrix:
#define GB_Sp_DECLARE(Sp,const) GB_MDECL (Sp, const, u)
#define GB_Sh_DECLARE(Sh,const) GB_MDECL (Sh, const, u)
#define GB_Si_DECLARE(Si,const) GB_MDECL (Si, const, )
#define GB_Si_DECLARE_U(Si,const) GB_MDECL (Si, const, u)
#define GB_SYp_DECLARE(S_Yp,const) GB_MDECL (S_Yp, const, u)
#define GB_SYi_DECLARE(S_Yi,const) GB_MDECL (S_Yi, const, u)
#define GB_SYx_DECLARE(S_Yx,const) GB_MDECL (S_Yx, const, u)
// R matrix:
#define GB_Rp_DECLARE(Rp,const) GB_MDECL (Rp, const, u)
#define GB_Rh_DECLARE(Rh,const) GB_MDECL (Rh, const, u)
#define GB_Ri_DECLARE(Ri,const) GB_MDECL (Ri, const, )
#define GB_Ri_DECLARE_U(Ri,const) GB_MDECL (Ri, const, u)
// Z matrix:
#define GB_Zp_DECLARE(Zp,const) GB_MDECL (Zp, const, u)
#define GB_Zh_DECLARE(Zh,const) GB_MDECL (Zh, const, u)
#define GB_Zi_DECLARE(Zi,const) GB_MDECL (Zi, const, )
#define GB_Zi_DECLARE_U(Zi,const) GB_MDECL (Zi, const, u)
// for getting pointers from specific matrices:
// C matrix:
#define GB_Cp_PTR(Cp,C) GB_GET_MATRIX_PTR (Cp, C, p_is_32, p)
#define GB_Ch_PTR(Ch,C) GB_GET_MATRIX_PTR (Ch, C, j_is_32, h)
#define GB_Ci_PTR(Ci,C) GB_GET_MATRIX_PTR (Ci, C, i_is_32, i)
#define GB_CYp_PTR(C_Yp,C) GB_GET_HYPER_PTR (C_Yp, C, p)
#define GB_CYi_PTR(C_Yi,C) GB_GET_HYPER_PTR (C_Yi, C, i)
#define GB_CYx_PTR(C_Yx,C) GB_GET_HYPER_PTR (C_Yx, C, x)
#define GB_CPendingi_PTR(Pending_i,C) GB_GET_PENDINGi_PTR (Pending_i, C)
#define GB_CPendingj_PTR(Pending_j,C) GB_GET_PENDINGj_PTR (Pending_j, C)
// M matrix:
#define GB_Mp_PTR(Mp,M) GB_GET_MATRIX_PTR (Mp, M, p_is_32, p)
#define GB_Mh_PTR(Mh,M) GB_GET_MATRIX_PTR (Mh, M, j_is_32, h)
#define GB_Mi_PTR(Mi,M) GB_GET_MATRIX_PTR (Mi, M, i_is_32, i)
#define GB_MYp_PTR(M_Yp,M) GB_GET_HYPER_PTR (M_Yp, M, p)
#define GB_MYi_PTR(M_Yi,M) GB_GET_HYPER_PTR (M_Yi, M, i)
#define GB_MYx_PTR(M_Yx,M) GB_GET_HYPER_PTR (M_Yx, M, x)
// A matrix:
#define GB_Ap_PTR(Ap,A) GB_GET_MATRIX_PTR (Ap, A, p_is_32, p)
#define GB_Ah_PTR(Ah,A) GB_GET_MATRIX_PTR (Ah, A, j_is_32, h)
#define GB_Ai_PTR(Ai,A) GB_GET_MATRIX_PTR (Ai, A, i_is_32, i)
#define GB_AYp_PTR(A_Yp,A) GB_GET_HYPER_PTR (A_Yp, A, p)
#define GB_AYi_PTR(A_Yi,A) GB_GET_HYPER_PTR (A_Yi, A, i)
#define GB_AYx_PTR(A_Yx,A) GB_GET_HYPER_PTR (A_Yx, A, x)
// B matrix:
#define GB_Bp_PTR(Bp,B) GB_GET_MATRIX_PTR (Bp, B, p_is_32, p)
#define GB_Bh_PTR(Bh,B) GB_GET_MATRIX_PTR (Bh, B, j_is_32, h)
#define GB_Bi_PTR(Bi,B) GB_GET_MATRIX_PTR (Bi, B, i_is_32, i)
#define GB_BYp_PTR(B_Yp,B) GB_GET_HYPER_PTR (B_Yp, B, p)
#define GB_BYi_PTR(B_Yi,B) GB_GET_HYPER_PTR (B_Yi, B, i)
#define GB_BYx_PTR(B_Yx,B) GB_GET_HYPER_PTR (B_Yx, B, x)
// S matrix:
#define GB_Sp_PTR(Sp,S) GB_GET_MATRIX_PTR (Sp, S, p_is_32, p)
#define GB_Sh_PTR(Sh,S) GB_GET_MATRIX_PTR (Sh, S, j_is_32, h)
#define GB_Si_PTR(Si,S) GB_GET_MATRIX_PTR (Si, S, i_is_32, i)
#define GB_SYp_PTR(S_Yp,S) GB_GET_HYPER_PTR (S_Yp, S, p)
#define GB_SYi_PTR(S_Yi,S) GB_GET_HYPER_PTR (S_Yi, S, i)
#define GB_SYx_PTR(S_Yx,S) GB_GET_HYPER_PTR (S_Yx, S, x)
// R matrix:
#define GB_Rp_PTR(Rp,R) GB_GET_MATRIX_PTR (Rp, R, p_is_32, p)
#define GB_Rh_PTR(Rh,R) GB_GET_MATRIX_PTR (Rh, R, j_is_32, h)
#define GB_Ri_PTR(Ri,R) GB_GET_MATRIX_PTR (Ri, R, i_is_32, i)
// Z matrix:
#define GB_Zp_PTR(Zp,Z) GB_GET_MATRIX_PTR (Zp, Z, p_is_32, p)
#define GB_Zh_PTR(Zh,Z) GB_GET_MATRIX_PTR (Zh, Z, j_is_32, h)
#define GB_Zi_PTR(Zi,Z) GB_GET_MATRIX_PTR (Zi, Z, i_is_32, i)
// for getting entries from Ap, Ah, Ai for specific matrices:
// C matrix:
#define GBp_C(Cp,k,vlen) GBp (Cp, k, vlen)
#define GBh_C(Ch,k) GBh (Ch, k)
#define GBi_C(Ci,p,vlen) GBi (Ci, p, vlen)
#define GBb_C(Cb,p) GBb (Cb, p)
#define GB_C_NVALS(e) int64_t e = GB_nnz (C)
#define GB_C_NHELD(e) int64_t e = GB_nnz_held (C)
// M matrix:
#define GBp_M(Mp,k,vlen) GBp (Mp, k, vlen)
#define GBh_M(Mh,k) GBh (Mh, k)
#define GBi_M(Mi,p,vlen) GBi (Mi, p, vlen)
#define GBb_M(Mb,p) GBb (Mb, p)
#define GB_M_NVALS(e) int64_t e = GB_nnz (M)
#define GB_M_NHELD(e) int64_t e = GB_nnz_held (M)
// A matrix:
#define GBp_A(Ap,k,vlen) GBp (Ap, k, vlen)
#define GBh_A(Ah,k) GBh (Ah, k)
#define GBi_A(Ai,p,vlen) GBi (Ai, p, vlen)
#define GBb_A(Ab,p) GBb (Ab, p)
#define GB_A_NVALS(e) int64_t e = GB_nnz (A)
#define GB_A_NHELD(e) int64_t e = GB_nnz_held (A)
// B matrix:
#define GBp_B(Bp,k,vlen) GBp (Bp, k, vlen)
#define GBh_B(Bh,k) GBh (Bh, k)
#define GBi_B(Bi,p,vlen) GBi (Bi, p, vlen)
#define GBb_B(Bb,p) GBb (Bb, p)
#define GB_B_NVALS(e) int64_t e = GB_nnz (B)
#define GB_B_NHELD(e) int64_t e = GB_nnz_held (B)
// S matrix:
#define GBp_S(Sp,k,vlen) GBp (Sp, k, vlen)
#define GBh_S(Sh,k) GBh (Sh, k)
#define GBi_S(Si,p,vlen) GBi (Si, p, vlen)
#define GBb_S(Sb,p) GBb (Sb, p)
#define GB_S_NVALS(e) int64_t e = GB_nnz (S)
#define GB_S_NHELD(e) int64_t e = GB_nnz_held (S)
// R matrix:
#define GBp_R(Rp,k,vlen) GBp (Rp, k, vlen)
#define GBh_R(Rh,k) GBh (Rh, k)
#define GBi_R(Ri,p,vlen) GBi (Ri, p, vlen)
#define GBb_R(Rb,p) GBb (Rb, p)
#define GB_R_NVALS(e) int64_t e = GB_nnz (R)
#define GB_R_NHELD(e) int64_t e = GB_nnz_held (R)
// Z matrix:
#define GBp_Z(Zp,k,vlen) GBp (Zp, k, vlen)
#define GBh_Z(Zh,k) GBh (Zh, k)
#define GBi_Z(Zi,p,vlen) GBi (Zi, p, vlen)
#define GBb_Z(Zb,p) GBb (Zb, p)
#define GB_Z_NVALS(e) int64_t e = GB_nnz (Z)
#define GB_Z_NHELD(e) int64_t e = GB_nnz_held (Z)
#else
//--------------------------------------------------------------------------
// for JIT and PreJIT kernels
//--------------------------------------------------------------------------
// The JIT kernels only need to define GB_Ap_BITS, GB_Aj_BITS, and
// GB_Ai_BITS for each matrix, as 32 or 64.
// GB_IGET: get I [k] for a 32/64-bit integer array I
#define GB_IGET(I,k) I [k]
// GB_ISET: set I [k] for a 32/64-bit integer array I
#define GB_ISET(I,k,i) I [k] = (i)
// GB_IINC: increment I [k] for a 32/64-bit integer array I
#define GB_IINC(I,k,i) I [k] += (i)
// JIT helper macro
#ifdef GB_CUDA_KERNEL
#define GB_JDECL(I,const,u,bits) \
const GB_EVAL4 (u,int,bits,_t) *__restrict__ I = NULL
#else
#define GB_JDECL(I,const,u,bits) \
const GB_EVAL4 (u,int,bits,_t) *restrict I = NULL
#endif
// helper macro: get a 32/64-bit pointer from a matrix
#define GB_GET_MATRIX_PTR(I,A,component) \
I = (A) ? (A->component) : NULL
// helper macro: get a 32/64-bit pointer from a matrix hyper_hash.
#define GB_GET_HYPER_PTR(I,A,component) \
I = (A && A->Y) ? (A->Y->component) : NULL
// for declaring pointers for specific matrices:
// C matrix:
#define GB_Cp_DECLARE(Cp,const) GB_JDECL (Cp, const, u, GB_Cp_BITS)
#define GB_Ch_DECLARE(Ch,const) GB_JDECL (Ch, const, u, GB_Cj_BITS)
#define GB_Ci_DECLARE(Ci,const) GB_JDECL (Ci, const, , GB_Ci_BITS)
#define GB_Ci_DECLARE_U(Ci,const) GB_JDECL (Ci, const, u, GB_Ci_BITS)
#define GB_CYp_DECLARE(C_Yp,const) GB_JDECL (C_Yp,const, u, GB_Cj_BITS)
#define GB_CYi_DECLARE(C_Yi,const) GB_JDECL (C_Yi,const, u, GB_Cj_BITS)
#define GB_CYx_DECLARE(C_Yx,const) GB_JDECL (C_Yx,const, u, GB_Cj_BITS)
#define GB_CPendingi_DECLARE(Pending_i) \
GB_JDECL (Pending_i, , u, GB_Ci_BITS)
#define GB_CPendingj_DECLARE(Pending_j) \
GB_JDECL (Pending_j, , u, GB_Cj_BITS)
#define GB_Cp_IS_32 (GB_Cp_BITS == 32)
#define GB_Cj_IS_32 (GB_Cj_BITS == 32)
#define GB_Ci_IS_32 (GB_Ci_BITS == 32)
// M matrix:
#define GB_Mp_DECLARE(Mp,const) GB_JDECL (Mp, const, u, GB_Mp_BITS)
#define GB_Mh_DECLARE(Mh,const) GB_JDECL (Mh, const, u, GB_Mj_BITS)
#define GB_Mi_DECLARE(Mi,const) GB_JDECL (Mi, const, , GB_Mi_BITS)
#define GB_Mi_DECLARE_U(Mi,const) GB_JDECL (Mi, const, u, GB_Mi_BITS)
#define GB_MYp_DECLARE(M_Yp,const) GB_JDECL (M_Yp,const, u, GB_Mj_BITS)
#define GB_MYi_DECLARE(M_Yi,const) GB_JDECL (M_Yi,const, u, GB_Mj_BITS)
#define GB_MYx_DECLARE(M_Yx,const) GB_JDECL (M_Yx,const, u, GB_Mj_BITS)
#define GB_Mp_IS_32 (GB_Mp_BITS == 32)
#define GB_Mj_IS_32 (GB_Mj_BITS == 32)
#define GB_Mi_IS_32 (GB_Mi_BITS == 32)
// A matrix:
#define GB_Ap_DECLARE(Ap,const) GB_JDECL (Ap, const, u, GB_Ap_BITS)
#define GB_Ah_DECLARE(Ah,const) GB_JDECL (Ah, const, u, GB_Aj_BITS)
#define GB_Ai_DECLARE(Ai,const) GB_JDECL (Ai, const, , GB_Ai_BITS)
#define GB_Ai_DECLARE_U(Ai,const) GB_JDECL (Ai, const, u, GB_Ai_BITS)
#define GB_AYp_DECLARE(A_Yp,const) GB_JDECL (A_Yp,const, u, GB_Aj_BITS)
#define GB_AYi_DECLARE(A_Yi,const) GB_JDECL (A_Yi,const, u, GB_Aj_BITS)
#define GB_AYx_DECLARE(A_Yx,const) GB_JDECL (A_Yx,const, u, GB_Aj_BITS)
#define GB_Ap_IS_32 (GB_Ap_BITS == 32)
#define GB_Aj_IS_32 (GB_Aj_BITS == 32)
#define GB_Ai_IS_32 (GB_Ai_BITS == 32)
// B matrix:
#define GB_Bp_DECLARE(Bp,const) GB_JDECL (Bp, const, u, GB_Bp_BITS)
#define GB_Bh_DECLARE(Bh,const) GB_JDECL (Bh, const, u, GB_Bj_BITS)
#define GB_Bi_DECLARE(Bi,const) GB_JDECL (Bi, const, , GB_Bi_BITS)
#define GB_Bi_DECLARE_U(Bi,const) GB_JDECL (Bi, const, u, GB_Bi_BITS)
#define GB_BYp_DECLARE(B_Yp,const) GB_JDECL (B_Yp,const, u, GB_Bj_BITS)
#define GB_BYi_DECLARE(B_Yi,const) GB_JDECL (B_Yi,const, u, GB_Bj_BITS)
#define GB_BYx_DECLARE(B_Yx,const) GB_JDECL (B_Yx,const, u, GB_Bj_BITS)
#define GB_Bp_IS_32 (GB_Bp_BITS == 32)
#define GB_Bj_IS_32 (GB_Bj_BITS == 32)
#define GB_Bi_IS_32 (GB_Bi_BITS == 32)
// S matrix:
#define GB_Sp_DECLARE(Sp,const) GB_JDECL (Sp, const, u, GB_Sp_BITS)
#define GB_Sh_DECLARE(Sh,const) GB_JDECL (Sh, const, u, GB_Sj_BITS)
#define GB_Si_DECLARE(Si,const) GB_JDECL (Si, const, , GB_Si_BITS)
#define GB_Si_DECLARE_U(Si,const) GB_JDECL (Si, const, u, GB_Si_BITS)
#define GB_SYp_DECLARE(S_Yp,const) GB_JDECL (S_Yp,const, u, GB_Sj_BITS)
#define GB_SYi_DECLARE(S_Yi,const) GB_JDECL (S_Yi,const, u, GB_Sj_BITS)
#define GB_SYx_DECLARE(S_Yx,const) GB_JDECL (S_Yx,const, u, GB_Sj_BITS)
#define GB_Sp_IS_32 (GB_Sp_BITS == 32)
#define GB_Sj_IS_32 (GB_Sj_BITS == 32)
#define GB_Si_IS_32 (GB_Si_BITS == 32)
// R matrix:
#define GB_Rp_DECLARE(Rp,const) GB_JDECL (Rp, const, u, GB_Rp_BITS)
#define GB_Rh_DECLARE(Rh,const) GB_JDECL (Rh, const, u, GB_Rj_BITS)
#define GB_Ri_DECLARE(Ri,const) GB_JDECL (Ri, const, , GB_Ri_BITS)
#define GB_Ri_DECLARE_U(Ri,const) GB_JDECL (Ri, const, u, GB_Ri_BITS)
#define GB_Rp_IS_32 (GB_Rp_BITS == 32)
#define GB_Rj_IS_32 (GB_Rj_BITS == 32)
#define GB_Ri_IS_32 (GB_Ri_BITS == 32)
// Z matrix:
#define GB_Zp_DECLARE(Zp,const) GB_JDECL (Zp, const, u, GB_Zp_BITS)
#define GB_Zh_DECLARE(Zh,const) GB_JDECL (Zh, const, u, GB_Zj_BITS)
#define GB_Zi_DECLARE(Zi,const) GB_JDECL (Zi, const, , GB_Zi_BITS)
#define GB_Zi_DECLARE_U(Zi,const) GB_JDECL (Zi, const, u, GB_Zi_BITS)
#define GB_Zp_IS_32 (GB_Zp_BITS == 32)
#define GB_Zj_IS_32 (GB_Zj_BITS == 32)
#define GB_Zi_IS_32 (GB_Zi_BITS == 32)
// for getting pointers from specific matrices:
// C matrix:
#define GB_Cp_PTR(Cp,C) GB_GET_MATRIX_PTR (Cp, C, p)
#define GB_Ch_PTR(Ch,C) GB_GET_MATRIX_PTR (Ch, C, h)
#define GB_Ci_PTR(Ci,C) GB_GET_MATRIX_PTR (Ci, C, i)
#define GB_CYp_PTR(C_Yp,C) GB_GET_HYPER_PTR (C_Yp, C, p)
#define GB_CYi_PTR(C_Yi,C) GB_GET_HYPER_PTR (C_Yi, C, i)
#define GB_CYx_PTR(C_Yx,C) GB_GET_HYPER_PTR (C_Yx, C, x)
#define GB_CPendingi_PTR(Pending_i,C) Pending_i = C->Pending->i
#define GB_CPendingj_PTR(Pending_j,C) Pending_j = C->Pending->j
// M matrix:
#define GB_Mp_PTR(Mp,M) GB_GET_MATRIX_PTR (Mp, M, p)
#define GB_Mh_PTR(Mh,M) GB_GET_MATRIX_PTR (Mh, M, h)
#define GB_Mi_PTR(Mi,M) GB_GET_MATRIX_PTR (Mi, M, i)
#define GB_MYp_PTR(M_Yp,M) GB_GET_HYPER_PTR (M_Yp, M, p)
#define GB_MYi_PTR(M_Yi,M) GB_GET_HYPER_PTR (M_Yi, M, i)
#define GB_MYx_PTR(M_Yx,M) GB_GET_HYPER_PTR (M_Yx, M, x)
// A matrix:
#define GB_Ap_PTR(Ap,A) GB_GET_MATRIX_PTR (Ap, A, p)
#define GB_Ah_PTR(Ah,A) GB_GET_MATRIX_PTR (Ah, A, h)
#define GB_Ai_PTR(Ai,A) GB_GET_MATRIX_PTR (Ai, A, i)
#define GB_AYp_PTR(A_Yp,A) GB_GET_HYPER_PTR (A_Yp, A, p)
#define GB_AYi_PTR(A_Yi,A) GB_GET_HYPER_PTR (A_Yi, A, i)
#define GB_AYx_PTR(A_Yx,A) GB_GET_HYPER_PTR (A_Yx, A, x)
// B matrix:
#define GB_Bp_PTR(Bp,B) GB_GET_MATRIX_PTR (Bp, B, p)
#define GB_Bh_PTR(Bh,B) GB_GET_MATRIX_PTR (Bh, B, h)
#define GB_Bi_PTR(Bi,B) GB_GET_MATRIX_PTR (Bi, B, i)
#define GB_BYp_PTR(B_Yp,B) GB_GET_HYPER_PTR (B_Yp, B, p)
#define GB_BYi_PTR(B_Yi,B) GB_GET_HYPER_PTR (B_Yi, B, i)
#define GB_BYx_PTR(B_Yx,B) GB_GET_HYPER_PTR (B_Yx, B, x)
// S matrix:
#define GB_Sp_PTR(Sp,S) GB_GET_MATRIX_PTR (Sp, S, p)
#define GB_Sh_PTR(Sh,S) GB_GET_MATRIX_PTR (Sh, S, h)
#define GB_Si_PTR(Si,S) GB_GET_MATRIX_PTR (Si, S, i)
#define GB_SYp_PTR(S_Yp,S) GB_GET_HYPER_PTR (S_Yp, S, p)
#define GB_SYi_PTR(S_Yi,S) GB_GET_HYPER_PTR (S_Yi, S, i)
#define GB_SYx_PTR(S_Yx,S) GB_GET_HYPER_PTR (S_Yx, S, x)
// R matrix:
#define GB_Rp_PTR(Rp,R) GB_GET_MATRIX_PTR (Rp, R, p)
#define GB_Rh_PTR(Rh,R) GB_GET_MATRIX_PTR (Rh, R, h)
#define GB_Ri_PTR(Ri,R) GB_GET_MATRIX_PTR (Ri, R, i)
// Z matrix:
#define GB_Zp_PTR(Zp,Z) GB_GET_MATRIX_PTR (Zp, Z, p)
#define GB_Zh_PTR(Zh,Z) GB_GET_MATRIX_PTR (Zh, Z, h)
#define GB_Zi_PTR(Zi,Z) GB_GET_MATRIX_PTR (Zi, Z, i)
// for getting entries from Ap, Ah, Ai for specific matrices:
// These must be #define'd in each JIT kernel, via GB_macrofy_*
#endif
#endif
|