File: GB_AxB.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (561 lines) | stat: -rw-r--r-- 15,988 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
//------------------------------------------------------------------------------
// GB_AxB.c: matrix multiply for a single semiring
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#include "GB_control.h"
GB_type_enabled
#if GB_TYPE_ENABLED
#include "GB.h"
#include "mxm/GB_AxB_saxpy.h"
#include "assign/GB_bitmap_assign_methods.h"
GB_axb__include_h

// semiring operators:
GB_multiply_add
GB_multiply
GB_add_op
GB_add_update
// identity: GB_identity

// A matrix, typecast to A2 for multiplier input
GB_a_is_pattern
GB_atype
GB_a2type
GB_declarea
GB_geta

// B matrix, typecast to B2 for multiplier input
GB_b_is_pattern
GB_btype
GB_b2type
GB_declareb
GB_getb
GB_bsize

// C matrix
GB_c_iso
GB_ctype
GB_putc

// special case semirings:
GB_is_any_pair_semiring
GB_is_lxor_pair_semiring
GB_is_plus_pair_real_semiring
GB_is_plus_pair_8_semiring
GB_is_plus_pair_16_semiring
GB_is_plus_pair_32_semiring
GB_is_plus_pair_big_semiring
GB_is_min_firstj_semiring
GB_is_max_firstj_semiring
GB_semiring_has_avx

// monoid properties:
GB_ztype
GB_declare_identity
GB_declare_const_identity
GB_z_nbits
GB_has_identity_byte
GB_identity_byte
GB_z_atomic_bits
GB_z_atomic_type
GB_z_has_atomic_update
GB_z_has_omp_atomic_update
GB_ztype_ignore_overflow
GB_pragma_simd_reduction_monoid
GB_is_any_monoid
GB_is_imin_monoid
GB_is_imax_monoid
GB_is_fmin_monoid
GB_is_fmax_monoid
GB_is_plus_fc32_monoid
GB_is_plus_fc64_monoid
GB_monoid_is_terminal
GB_terminal_condition
GB_if_terminal_break
GB_declare_const_terminal
GB_ztype_is_complex

// special case multipliers:
GB_is_pair_multiplier
GB_pair_one
GB_offset
GB_is_firsti_multiplier
GB_is_firstj_multiplier
GB_is_secondj_multiplier

// disable this semiring and use the generic case if these conditions hold
GB_disable

#include "mxm/include/GB_mxm_shared_definitions.h"

//------------------------------------------------------------------------------
// GB_Adot2B: C=A'*B, C<M>=A'*B, or C<!M>=A'*B: dot product method, C is bitmap
//------------------------------------------------------------------------------

// if A_not_transposed is true, then C=A*B is computed where A is bitmap or full

GrB_Info GB (_Adot2B)
(
    GrB_Matrix C,
    const GrB_Matrix M, const bool Mask_comp, const bool Mask_struct,
    const bool A_not_transposed,
    const GrB_Matrix A, int64_t *restrict A_slice,
    const GrB_Matrix B, int64_t *restrict B_slice,
    int nthreads, int naslice, int nbslice
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    #include "mxm/template/GB_AxB_dot2_meta.c"
    return (GrB_SUCCESS) ;
    #endif
}

//------------------------------------------------------------------------------
// GB_Adot3B: C<M>=A'*B: masked dot product, C is sparse or hyper
//------------------------------------------------------------------------------

GrB_Info GB (_Adot3B)
(
    GrB_Matrix C,
    const GrB_Matrix M, const bool Mask_struct,
    const GrB_Matrix A,
    const GrB_Matrix B,
    const GB_task_struct *restrict TaskList,
    const int ntasks,
    const int nthreads
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    #include "mxm/template/GB_AxB_dot3_meta.c"
    return (GrB_SUCCESS) ;
    #endif
}

m4_divert(if_dot4_enabled)
//------------------------------------------------------------------------------
// GB_Adot4B:  C+=A'*B: dense dot product
//------------------------------------------------------------------------------

GrB_Info GB (_Adot4B)
(
    GrB_Matrix C,
    const bool C_in_iso,
    const GrB_Matrix A,
    const GrB_Matrix B,
    const int64_t *restrict A_slice,
    const int64_t *restrict B_slice,
    const int naslice,
    const int nbslice,
    const int nthreads,
    GB_Werk Werk
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    #include "mxm/template/GB_AxB_dot4_meta.c"
    return (GrB_SUCCESS) ;
    #endif
}
m4_divert(0)

//------------------------------------------------------------------------------
// GB_AsaxbitB: C=A*B, C<M>=A*B, C<!M>=A*B: saxpy method, C is bitmap only
//------------------------------------------------------------------------------

#include "mxm/include/GB_AxB_saxpy3_template.h"

GrB_Info GB (_AsaxbitB)
(
    GrB_Matrix C,
    const GrB_Matrix M,
    const bool Mask_comp,
    const bool Mask_struct,
    const GrB_Matrix A,
    const GrB_Matrix B,
    const int ntasks,
    const int nthreads,
    const int nfine_tasks_per_vector,
    const bool use_coarse_tasks,
    const bool use_atomics,
    const int64_t *restrict M_ek_slicing,
    const int M_nthreads,
    const int M_ntasks,
    const int64_t *restrict A_slice,
    const int64_t *restrict H_slice,
    GB_void *restrict Wcx,
    int8_t *restrict Wf
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    int nthreads_max = GB_Context_nthreads_max ( ) ;
    double chunk = GB_Context_chunk ( ) ;
    #include "mxm/template/GB_AxB_saxbit_template.c"
    return (GrB_SUCCESS) ;
    #endif
}

m4_divert(if_saxpy4_enabled)
//------------------------------------------------------------------------------
// GB_Asaxpy4B: C += A*B when C is full
//------------------------------------------------------------------------------

GrB_Info GB (_Asaxpy4B)
(
    GrB_Matrix C,
    const GrB_Matrix A,
    const GrB_Matrix B,
    const int ntasks,
    const int nthreads,
    const int nfine_tasks_per_vector,
    const bool use_coarse_tasks,
    const bool use_atomics,
    const int64_t *A_slice,
    const int64_t *H_slice,
    GB_void *restrict Wcx
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    #include "mxm/template/GB_AxB_saxpy4_meta.c"
    return (GrB_SUCCESS) ;
    #endif
}
m4_divert(0)

m4_divert(if_saxpy5_enabled)
//------------------------------------------------------------------------------
// GB_Asaxpy5B: C += A*B when C is full, A is bitmap/full, B is sparse/hyper
//------------------------------------------------------------------------------

    #if !GB_DISABLE && !GB_A_IS_PATTERN

m4_divert(if_semiring_has_avx)
        //----------------------------------------------------------------------
        // saxpy5 method with vectors of length 8 for double, 16 for single
        //----------------------------------------------------------------------

        // AVX512F: vector registers are 512 bits, or 64 bytes, which can hold
        // 16 floats or 8 doubles.

        #define GB_V16_512 (16 * GB_Z_NBITS <= 512)
        #define GB_V8_512  ( 8 * GB_Z_NBITS <= 512)
        #define GB_V4_512  ( 4 * GB_Z_NBITS <= 512)

        #define GB_V16 GB_V16_512
        #define GB_V8  GB_V8_512
        #define GB_V4  GB_V4_512

        #if GB_COMPILER_SUPPORTS_AVX512F && GB_V4_512

            GB_TARGET_AVX512F static inline void GB_AxB_saxpy5_unrolled_avx512f
            (
                GrB_Matrix C,
                const GrB_Matrix A,
                const GrB_Matrix B,
                const int ntasks,
                const int nthreads,
                const int64_t *B_slice
            )
            {
                #include "mxm/template/GB_AxB_saxpy5_unrolled.c"
            }

        #endif

        //----------------------------------------------------------------------
        // saxpy5 method with vectors of length 4 for double, 8 for single
        //----------------------------------------------------------------------

        // AVX2: vector registers are 256 bits, or 32 bytes, which can hold
        // 8 floats or 4 doubles.

        #define GB_V16_256 (16 * GB_Z_NBITS <= 256)
        #define GB_V8_256  ( 8 * GB_Z_NBITS <= 256)
        #define GB_V4_256  ( 4 * GB_Z_NBITS <= 256)

        #undef  GB_V16
        #undef  GB_V8
        #undef  GB_V4

        #define GB_V16 GB_V16_256
        #define GB_V8  GB_V8_256
        #define GB_V4  GB_V4_256

        #if GB_COMPILER_SUPPORTS_AVX2 && GB_V4_256

            GB_TARGET_AVX2 static inline void GB_AxB_saxpy5_unrolled_avx2
            (
                GrB_Matrix C,
                const GrB_Matrix A,
                const GrB_Matrix B,
                const int ntasks,
                const int nthreads,
                const int64_t *B_slice
            )
            {
                #include "mxm/template/GB_AxB_saxpy5_unrolled.c"
            }

        #endif
m4_divert(if_saxpy5_enabled)

        //----------------------------------------------------------------------
        // saxpy5 method unrolled, with no vectors
        //----------------------------------------------------------------------

        #undef  GB_V16
        #undef  GB_V8
        #undef  GB_V4

        #define GB_V16 0
        #define GB_V8  0
        #define GB_V4  0

        static inline void GB_AxB_saxpy5_unrolled_vanilla
        (
            GrB_Matrix C,
            const GrB_Matrix A,
            const GrB_Matrix B,
            const int ntasks,
            const int nthreads,
            const int64_t *B_slice
        )
        {
            #include "mxm/template/GB_AxB_saxpy5_unrolled.c"
        }

    #endif

    GrB_Info GB (_Asaxpy5B)
    (
        GrB_Matrix C,
        const GrB_Matrix A,
        const GrB_Matrix B,
        const int ntasks,
        const int nthreads,
        const int64_t *B_slice
    )
    { 
        #if GB_DISABLE
        return (GrB_NO_VALUE) ;
        #else
        #include "mxm/factory/GB_AxB_saxpy5_meta.c"
        return (GrB_SUCCESS) ;
        #endif
    }
m4_divert(0)

//------------------------------------------------------------------------------
// GB_Asaxpy3B: C=A*B, C<M>=A*B, C<!M>=A*B: saxpy method (Gustavson + Hash)
//------------------------------------------------------------------------------

GrB_Info GB (_Asaxpy3B)
(
    GrB_Matrix C,   // C<any M>=A*B, C sparse or hypersparse
    const GrB_Matrix M, const bool Mask_comp, const bool Mask_struct,
    const bool M_in_place,
    const GrB_Matrix A,
    const GrB_Matrix B,
    GB_saxpy3task_struct *restrict SaxpyTasks,
    const int ntasks, const int nfine, const int nthreads, const int do_sort,
    GB_Werk Werk
)
{ 
    #if GB_DISABLE
    return (GrB_NO_VALUE) ;
    #else
    ASSERT (GB_IS_SPARSE (C) || GB_IS_HYPERSPARSE (C)) ;
    if (M == NULL)
    {
        // C = A*B, no mask
        return (GB (_Asaxpy3B_noM) (C, A, B,
            SaxpyTasks, ntasks, nfine, nthreads, do_sort, Werk)) ;
    }
    else if (!Mask_comp)
    {
        // C<M> = A*B
        return (GB (_Asaxpy3B_M) (C,
            M, Mask_struct, M_in_place, A, B,
            SaxpyTasks, ntasks, nfine, nthreads, do_sort, Werk)) ;
    }
    else
    {
        // C<!M> = A*B
        return (GB (_Asaxpy3B_notM) (C,
            M, Mask_struct, M_in_place, A, B,
            SaxpyTasks, ntasks, nfine, nthreads, do_sort, Werk)) ;
    }
    #endif
}

//------------------------------------------------------------------------------
// GB_Asaxpy3B_M: C<M>=A*B: saxpy method (Gustavson + Hash)
//------------------------------------------------------------------------------

#if ( !GB_DISABLE )

    GrB_Info GB (_Asaxpy3B_M)
    (
        GrB_Matrix C,   // C<M>=A*B, C sparse or hypersparse
        const GrB_Matrix M, const bool Mask_struct,
        const bool M_in_place,
        const GrB_Matrix A,
        const GrB_Matrix B,
        GB_saxpy3task_struct *restrict SaxpyTasks,
        const int ntasks, const int nfine, const int nthreads,
        const int do_sort,
        GB_Werk Werk
    )
    {
        int nthreads_max = GB_Context_nthreads_max ( ) ;
        double chunk = GB_Context_chunk ( ) ;
        if (GB_IS_SPARSE (A) && GB_IS_SPARSE (B))
        {
            // both A and B are sparse
            #define GB_META16
            #define GB_NO_MASK 0
            #define GB_MASK_COMP 0
            #define GB_A_IS_SPARSE 1
            #define GB_A_IS_HYPER  0
            #define GB_A_IS_BITMAP 0
            #define GB_A_IS_FULL   0
            #define GB_B_IS_SPARSE 1
            #define GB_B_IS_HYPER  0
            #define GB_B_IS_BITMAP 0
            #define GB_B_IS_FULL   0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        else
        {
            // general case
            #undef GB_META16
            #define GB_NO_MASK 0
            #define GB_MASK_COMP 0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        return (GrB_SUCCESS) ;
    }

#endif

//------------------------------------------------------------------------------
// GB_Asaxpy3B_noM: C=A*B: saxpy method (Gustavson + Hash)
//------------------------------------------------------------------------------

#if ( !GB_DISABLE )

    GrB_Info GB (_Asaxpy3B_noM)
    (
        GrB_Matrix C,   // C=A*B, C sparse or hypersparse
        const GrB_Matrix A,
        const GrB_Matrix B,
        GB_saxpy3task_struct *restrict SaxpyTasks,
        const int ntasks, const int nfine, const int nthreads,
        const int do_sort,
        GB_Werk Werk
    )
    {
        int nthreads_max = GB_Context_nthreads_max ( ) ;
        double chunk = GB_Context_chunk ( ) ;
        if (GB_IS_SPARSE (A) && GB_IS_SPARSE (B))
        {
            // both A and B are sparse
            #define GB_META16
            #define GB_NO_MASK 1
            #define GB_MASK_COMP 0
            #define GB_A_IS_SPARSE 1
            #define GB_A_IS_HYPER  0
            #define GB_A_IS_BITMAP 0
            #define GB_A_IS_FULL   0
            #define GB_B_IS_SPARSE 1
            #define GB_B_IS_HYPER  0
            #define GB_B_IS_BITMAP 0
            #define GB_B_IS_FULL   0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        else
        {
            // general case
            #undef GB_META16
            #define GB_NO_MASK 1
            #define GB_MASK_COMP 0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        return (GrB_SUCCESS) ;
    }

#endif

//------------------------------------------------------------------------------
// GB_Asaxpy3B_notM: C<!M>=A*B: saxpy method (Gustavson + Hash)
//------------------------------------------------------------------------------

#if ( !GB_DISABLE )

    GrB_Info GB (_Asaxpy3B_notM)
    (
        GrB_Matrix C,   // C<!M>=A*B, C sparse or hypersparse
        const GrB_Matrix M, const bool Mask_struct,
        const bool M_in_place,
        const GrB_Matrix A,
        const GrB_Matrix B,
        GB_saxpy3task_struct *restrict SaxpyTasks,
        const int ntasks, const int nfine, const int nthreads,
        const int do_sort,
        GB_Werk Werk
    )
    {
        int nthreads_max = GB_Context_nthreads_max ( ) ;
        double chunk = GB_Context_chunk ( ) ;
        if (GB_IS_SPARSE (A) && GB_IS_SPARSE (B))
        {
            // both A and B are sparse
            #define GB_META16
            #define GB_NO_MASK 0
            #define GB_MASK_COMP 1
            #define GB_A_IS_SPARSE 1
            #define GB_A_IS_HYPER  0
            #define GB_A_IS_BITMAP 0
            #define GB_A_IS_FULL   0
            #define GB_B_IS_SPARSE 1
            #define GB_B_IS_HYPER  0
            #define GB_B_IS_BITMAP 0
            #define GB_B_IS_FULL   0
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        else
        {
            // general case
            #undef GB_META16
            #define GB_NO_MASK 0
            #define GB_MASK_COMP 1
            #include "mxm/include/GB_meta16_definitions.h"
            #include "mxm/template/GB_AxB_saxpy3_template.c"
        }
        return (GrB_SUCCESS) ;
    }

#endif

#else
GB_EMPTY_PLACEHOLDER
#endif