File: GB_load_from_container.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (333 lines) | stat: -rw-r--r-- 12,098 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
//------------------------------------------------------------------------------
// GB_load_from_container: load a GrB_Matrix from a Container
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// A->user_name and all controls are preserved.  Everything else in the matrix
// A is revised: the dimensions, type, content, 32/64 integer status, iso
// status, jumbled status, orientation (by row/col), etc.

#include "GB_container.h"
#define GB_FREE_ALL GB_phybix_free (A) ;

static inline bool GB_type_ok (GrB_Type type)
{
    return (type == GrB_INT32 || type == GrB_UINT32 ||
            type == GrB_INT64 || type == GrB_UINT64) ;
}

//------------------------------------------------------------------------------
// GB_load_from_container
//------------------------------------------------------------------------------

GrB_Info GB_load_from_container // GxB_Container -> GrB_Matrix
(
    GrB_Matrix A,               // matrix to load from the Container
    GxB_Container Container,    // Container with contents to load into A
    GB_Werk Werk
)
{ 

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT_MATRIX_OK (A, "A to load from Container", GB0) ;
    ASSERT_MATRIX_OK_OR_NULL (Container->Y, "Container->Y before load", GB0) ;
    GB_CHECK_CONTAINER (Container) ;

    //--------------------------------------------------------------------------
    // free any prior content of A
    //--------------------------------------------------------------------------

    GB_phybix_free (A) ;

    //--------------------------------------------------------------------------
    // load the matrix from the container
    //--------------------------------------------------------------------------

    int format = Container->format ;
    uint64_t nvals = (format == GxB_FULL) ? 0 : (Container->nvals) ;
    uint64_t nrows = Container->nrows ;
    uint64_t ncols = Container->ncols ;

    A->nvals = nvals ;
    A->is_csc = (Container->orientation == GrB_COLMAJOR) ;
    A->vlen = (A->is_csc) ? nrows : ncols ;
    A->vdim = (A->is_csc) ? ncols : nrows ;

//  A->nvec_nonempty = (A->is_csc) ?
//      Container->ncols_nonempty : Container->nrows_nonempty ;
    GB_nvec_nonempty_set (A, (A->is_csc) ?
        Container->ncols_nonempty : Container->nrows_nonempty) ;

    A->iso = Container->iso ;
    A->jumbled = false ;
    uint64_t plen1 = 0, plen, Ab_len = 0, Ax_len = 0, Ai_len = 0 ;
    GrB_Type Ap_type = NULL, Ah_type = NULL, Ab_type = NULL, Ai_type = NULL ;
    uint64_t Ah_size = 0, Ap_size = 0, Ai_size = 0, Ab_size = 0, Ax_size = 0 ;
    uint64_t nrows_times_ncols = UINT64_MAX ;
    bool okb = GB_uint64_multiply (&nrows_times_ncols, nrows, ncols) ;
    bool ok = true ;
    bool jumbled = Container->jumbled ;

    // determine the A->j_is_32 condition when Container->h is empty
    bool h_empty = (Container->h == NULL ||
           (Container->h->vlen == 0 && Container->h->x == NULL)) ;
    if ((format == GxB_SPARSE) || (format == GxB_HYPERSPARSE && h_empty))
    { 
        bool Ap_is_32, Aj_is_32, Ai_is_32 ;
        GB_determine_pji_is_32 (&Ap_is_32, &Aj_is_32, &Ai_is_32,
            GxB_SPARSE, A->nvals, A->vlen, A->vdim, Werk) ;
        Ah_type = Aj_is_32 ? GrB_UINT32 : GrB_UINT64 ;
    }

    // clear the Container scalars
    Container->nrows = 0 ;
    Container->ncols = 0 ;
    Container->nrows_nonempty = -1 ;
    Container->ncols_nonempty = -1 ;
    Container->nvals = 0 ;
    Container->format = GxB_FULL ;
    Container->orientation = GrB_ROWMAJOR ;
    Container->iso = false ;
    Container->jumbled = false ;

    // Get or clear the phybix content: Ap, Ah, A->Y, A->b, A->i, and A->x,
    // depending on the format of the data held in the container.

    switch (format)
    {

        case GxB_HYPERSPARSE : 

            //------------------------------------------------------------------
            // hypersparse: load A->p, A->h, A->Y, and A->i from the container
            //------------------------------------------------------------------

            // load A->p
            GB_OK (GB_vector_unload (Container->p, &(A->p), &Ap_type,
                &plen1, &Ap_size, &(A->p_shallow), Werk)) ;
            A->p_size = (size_t) Ap_size ;
            ok = GB_type_ok (Ap_type) ;

            // load or create A->h
            if (h_empty)
            { 
                // A is an empty hypersparse matrix but A->h must not be NULL;
                // allocate space for A->h of type Ah_type for a single entry
                // Ah_type is uint32 or uint64, so sizeof (uint64_t) is fine.
                plen = 0 ;
                size_t s = 0 ;
                A->h = GB_CALLOC_MEMORY (1, sizeof (uint64_t), &s) ;
                if (A->h == NULL)
                { 
                    GB_FREE_ALL ;
                    return (GrB_OUT_OF_MEMORY) ;
                }
                Ah_size = (uint64_t) s ;
                A->h_shallow = false ;
            }
            else
            { 
                GB_OK (GB_vector_unload (Container->h, &(A->h), &Ah_type,
                    &plen, &Ah_size, &(A->h_shallow), Werk)) ;
            }
            A->h_size = (size_t) Ah_size ;
            ok = ok && GB_type_ok (Ah_type) ;

            // load A->Y
            A->Y = Container->Y ;
            Container->Y = NULL ;

            // clear Container->b
            GB_vector_reset (Container->b) ;

            // load A->i
            GB_OK (GB_vector_unload (Container->i, &(A->i), &Ai_type,
                &Ai_len, &Ai_size, &(A->i_shallow), Werk)) ;
            A->i_size = (size_t) Ai_size ;
            ok = ok && GB_type_ok (Ai_type) ;

            // define plen, nvec, and jumbled
            A->plen = plen ;
            A->nvec = plen ;
            A->jumbled = jumbled ;

            // basic sanity checks
            if (!ok || plen1 != plen + 1 ||
                !(A->nvec >= 0 && A->nvec <= A->plen && A->plen <= A->vdim))
            { 
                GB_FREE_ALL ;
                return (GrB_INVALID_VALUE) ;
            }
            break ;

        case GxB_SPARSE : 

            //------------------------------------------------------------------
            // sparse: load A->p and A->i from the container
            //------------------------------------------------------------------

            // load A->p
            GB_OK (GB_vector_unload (Container->p, &(A->p), &Ap_type,
                &plen1, &Ap_size, &(A->p_shallow), Werk)) ;
            A->p_size = (size_t) Ap_size ;
            ok = GB_type_ok (Ap_type) ;

            // clear Container->h, Y, and b
            GB_vector_reset (Container->h) ;
            GB_Matrix_free (&(Container->Y)) ;
            GB_vector_reset (Container->b) ;

            // load A->i
            GB_OK (GB_vector_unload (Container->i, &(A->i), &Ai_type,
                &Ai_len, &Ai_size, &(A->i_shallow), Werk)) ;
            A->i_size = (size_t) Ai_size ;
            ok = ok && GB_type_ok (Ai_type) ;

            // define plen, nvec, and jumbled
            A->plen = plen1 - 1 ;
            A->nvec = A->plen ;
            A->jumbled = jumbled ;

            // basic sanity checks
            if (!ok || !(A->nvec == A->plen && A->plen == A->vdim))
            { 
                GB_FREE_ALL ;
                return (GrB_INVALID_VALUE) ;
            }
            break ;

        case GxB_BITMAP : 

            //------------------------------------------------------------------
            // bitmap: load A->b from the container
            //------------------------------------------------------------------

            // clear Container->p, h, and Y
            GB_vector_reset (Container->p) ;
            GB_vector_reset (Container->h) ;
            GB_Matrix_free (&(Container->Y)) ;

            // load A->b
            GB_OK (GB_vector_unload (Container->b, (void **) &(A->b), &Ab_type,
                &Ab_len, &Ab_size, &(A->b_shallow), Werk)) ;
            A->b_size = (size_t) Ab_size ;

            // clear Container->i
            GB_vector_reset (Container->i) ;

            // define plen and nvec
            A->plen = -1 ;
            A->nvec = A->vdim ;

            // basic sanity checks
            if (Ab_type != GrB_INT8 || !okb || Ab_len < nrows_times_ncols)
            { 
                GB_FREE_ALL ;
                return (GrB_INVALID_VALUE) ;
            }
            break ;

        case GxB_FULL : 

            //------------------------------------------------------------------
            // full: clear phybi components
            //------------------------------------------------------------------

            GB_vector_reset (Container->p) ;
            GB_vector_reset (Container->h) ;
            GB_Matrix_free (&(Container->Y)) ;
            GB_vector_reset (Container->b) ;
            GB_vector_reset (Container->i) ;

            // define plen and nvec
            A->plen = -1 ;
            A->nvec = A->vdim ;
            break ;

        default :;
            break ;
    }

    // load A->x
    GB_OK (GB_vector_unload (Container->x, &(A->x), &(A->type),
        &Ax_len, &Ax_size, &(A->x_shallow), Werk)) ;
    A->x_size = (size_t) Ax_size ;

    // define the integer types
    A->p_is_32 = (Ap_type == GrB_UINT32 || Ap_type == GrB_INT32) ;
    A->j_is_32 = (Ah_type == GrB_UINT32 || Ah_type == GrB_INT32) ;
    A->i_is_32 = (Ai_type == GrB_UINT32 || Ai_type == GrB_INT32) ;

    //--------------------------------------------------------------------------
    // more basic sanity checks
    //--------------------------------------------------------------------------

    // Loading a GrB_Matrix from a Container takes O(1) time, so there is not
    // enough time to test the entire content of the matrix to see if it's
    // valid.  The user application can do that with GxB_Matrix_fprint with a
    // print level of zero, after the matrix is loaded.

    // ensure Ax_len is the right size
    if (A->iso)
    { 
        // A->x must have size >= 1 for all iso matrices
        ok = (Ax_len >= 1) ;
    }
    else if (format == GxB_HYPERSPARSE || format == GxB_SPARSE)
    { 
        // A->x must have size >= A->nvals for non-iso sparse/hypersparse
        ok = (Ax_len >= A->nvals) ;
    }
    else // A is full or bitmap
    { 
        // A->x must have size >= nrows*ncols for non-iso full/bitmap
        ok = okb && (Ax_len >= nrows_times_ncols) ;
    }

    // ensure Ai_len is the right size
    if (format == GxB_HYPERSPARSE || format == GxB_SPARSE && ok)
    { 
        // A->i must have size >= A->nvals for sparse/hypersparse
        ok = ok && (Ai_len >= A->nvals) ;

        // A->p [A->plen] must match A->nvals
        GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
        ok = ok && (A->nvals == GB_IGET (Ap, A->plen)) ;
    }

    // if A->jumbled is true, ensure A has no readonly components
    if (A->jumbled)
    { 
        ok = ok && !GB_is_shallow (A) ;
    }

    if (!ok)
    { 
        GB_FREE_ALL ;
        return (GrB_INVALID_VALUE) ;
    }

    // the matrix has passed the basic checks
    A->magic = GB_MAGIC ;

    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------

    ASSERT_MATRIX_OK (A, "A loaded from Container", GB0) ;
    ASSERT_VECTOR_OK (Container->p, "Container->p after load", GB0) ;
    ASSERT_VECTOR_OK (Container->h, "Container->h after load", GB0) ;
    ASSERT_VECTOR_OK (Container->b, "Container->b after load", GB0) ;
    ASSERT_VECTOR_OK (Container->i, "Container->i after load", GB0) ;
    ASSERT_VECTOR_OK (Container->x, "Container->x after load", GB0) ;
    return (GrB_SUCCESS) ;
}