1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
//------------------------------------------------------------------------------
// GB_convert_full_to_sparse: convert a matrix from full to sparse
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB.h"
GrB_Info GB_convert_full_to_sparse // convert matrix from full to sparse
(
GrB_Matrix A, // matrix to convert from full to sparse
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (A, "A converting full to sparse", GB0) ;
ASSERT (GB_IS_FULL (A) || GB_nnz_max (A) == 0) ;
ASSERT (!GB_IS_BITMAP (A)) ;
ASSERT (!GB_IS_SPARSE (A)) ;
ASSERT (!GB_IS_HYPERSPARSE (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
//--------------------------------------------------------------------------
// allocate A->p and A->i
//--------------------------------------------------------------------------
int64_t avdim = A->vdim ;
int64_t avlen = A->vlen ;
int64_t anz = GB_nnz_full (A) ;
GB_BURBLE_N (anz, "(full to sparse) ") ;
bool Ap_is_32, Aj_is_32, Ai_is_32 ;
GB_determine_pji_is_32 (&Ap_is_32, &Aj_is_32, &Ai_is_32,
GxB_AUTO_SPARSITY, anz, avlen, avdim, Werk) ;
void *Ap = NULL ; size_t Ap_size = 0 ;
void *Ai = NULL ; size_t Ai_size = 0 ;
size_t psize = (Ap_is_32) ? sizeof (uint32_t) : sizeof (uint64_t) ;
size_t isize = (Ai_is_32) ? sizeof (uint32_t) : sizeof (uint64_t) ;
Ap = GB_MALLOC_MEMORY (avdim+1, psize, &Ap_size) ;
Ai = GB_MALLOC_MEMORY (anz, isize, &Ai_size) ;
if (Ap == NULL || Ai == NULL)
{
// out of memory
GB_FREE_MEMORY (&Ap, Ap_size) ;
GB_FREE_MEMORY (&Ai, Ai_size) ;
return (GrB_OUT_OF_MEMORY) ;
}
A->p = Ap ; A->p_size = Ap_size ;
A->i = Ai ; A->i_size = Ai_size ;
A->p_is_32 = Ap_is_32 ;
A->j_is_32 = Aj_is_32 ;
A->i_is_32 = Ai_is_32 ;
A->plen = avdim ;
A->nvec = avdim ;
// A->nvec_nonempty = (avlen == 0) ? 0 : avdim ;
GB_nvec_nonempty_set (A, (avlen == 0) ? 0 : avdim) ;
A->nvals = anz ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
int nthreads = GB_nthreads (anz, chunk, nthreads_max) ;
//--------------------------------------------------------------------------
// fill the A->p and A->i pattern
//--------------------------------------------------------------------------
GB_IDECL (Ap, , u) ; GB_IPTR (Ap, Ap_is_32) ;
GB_IDECL (Ai, , u) ; GB_IPTR (Ai, Ai_is_32) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k <= avdim ; k++)
{
// Ap [k] = k * avlen ;
GB_ISET (Ap, k, k * avlen) ;
}
int64_t p ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (p = 0 ; p < anz ; p++)
{
// Ai [p] = p % avlen ;
GB_ISET (Ai, p, p % avlen) ;
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (A, "A converted from full to sparse", GB0) ;
ASSERT (GB_IS_SPARSE (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
return (GrB_SUCCESS) ;
}
|