File: GB_convert_int.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (373 lines) | stat: -rw-r--r-- 14,090 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
//------------------------------------------------------------------------------
// GB_convert_int: convert the integers in a matrix to/from 32/64 bits
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// The integer arrays A->[phi] and A->Y in the matrix A are converted to match
// the requested p_is_32_new, j_is_32_new, and i_is_32_new.  If converted,
// A->[phi] are no longer shallow.  If A->Y is entirely shallow, it is simply
// removed from A.  If A->Y is itself not shallow but contains any shallow
// A->Y->[phi] components, those components are converted and are no longer
// shallow.

// If A has too many entries for p_is_32_new == true, A->p is left unchanged.
// If the dimension of A is too large for j_is_32_new == true, A->h and A->Y
// are left unchanged.  If the dimension of A is too large for i_is_32_new ==
// true, A->i.  is left unchanged.  These are not error conditions.

#include "GB.h"
#define GB_FREE_ALL ;

GrB_Info GB_convert_int     // convert the integers of a matrix
(
    GrB_Matrix A,           // matrix to convert
    bool p_is_32_new,       // new integer format for A->p
    bool j_is_32_new,       // new integer format for A->p
    bool i_is_32_new,       // new integer format for A->h, A->i, and A->Y
    bool determine          // if true, revise p_is_32_new, j_is_32_new,
        // and i_is_32_new based on A->vlen, A->vdim and A->nvals.  Otherwise,
        // ignore the matrix properties and always convert to the new integer
        // sizes.
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    if (A == NULL || A->magic != GB_MAGIC)
    { 
        // nothing to convert 
        return (GrB_SUCCESS) ;
    }

    ASSERT (GB_ZOMBIES_OK (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;
    ASSERT (GB_PENDING_OK (A)) ;

    //--------------------------------------------------------------------------
    // get inputs
    //--------------------------------------------------------------------------

    if (GB_IS_FULL (A) || GB_IS_BITMAP (A))
    { 
        // quick return: nothing to do
        return (GrB_SUCCESS) ;
    }

    int64_t anz = GB_nnz (A) ;
    if (determine)
    {
        ASSERT_MATRIX_OK (A, "A converting integers", GB0) ;
        p_is_32_new = GB_determine_p_is_32 (p_is_32_new, anz) ;
        j_is_32_new = GB_determine_j_is_32 (j_is_32_new, A->vdim) ;
        i_is_32_new = GB_determine_i_is_32 (i_is_32_new, A->vlen) ;
    }
    bool p_is_32 = A->p_is_32 ;
    bool j_is_32 = A->j_is_32 ;
    bool i_is_32 = A->i_is_32 ;

    if (p_is_32 == p_is_32_new &&
        j_is_32 == j_is_32_new &&
        i_is_32 == i_is_32_new)
    { 
        // quick return: nothing to do
        return (GrB_SUCCESS) ;
    }

    //--------------------------------------------------------------------------
    // at least some integers must be converted
    //--------------------------------------------------------------------------

    // simply remove A->Y if it is entirely shallow
    if (A->Y_shallow)
    { 
        A->Y = NULL ;
        A->Y_shallow = false ;
    }

    bool A_is_hyper = GB_IS_HYPERSPARSE (A) ;   // (A->h != NULL)
    int64_t plen = A->plen ;
    GrB_Matrix Y = A->Y ;
    GB_Pending Pending = A->Pending ;
    int64_t ynz = GB_nnz (Y) ;
    int64_t yplen = (Y == NULL) ? 0 : Y->plen ;
    int64_t npending = (Pending == NULL) ? 0 : Pending->n ;
    int64_t nmax_pending = (Pending == NULL) ? 0 : Pending->nmax ;

    //--------------------------------------------------------------------------
    // allocate new space for A->[phi] and Y->[pix] if present
    //--------------------------------------------------------------------------

    // Y is not converted via a recurisive call to this method.  Instead, it is
    // converted directly below.  This is because Y->x must also be converted,
    // and also so that the conversion will be all-or-nothing, if out of
    // memory.

    void *Ap_new = NULL ; size_t Ap_new_size = 0 ;
    void *Ah_new = NULL ; size_t Ah_new_size = 0 ;
    void *Ai_new = NULL ; size_t Ai_new_size = 0 ;
    void *Yp_new = NULL ; size_t Yp_new_size = 0 ;
    void *Yi_new = NULL ; size_t Yi_new_size = 0 ;
    void *Yx_new = NULL ; size_t Yx_new_size = 0 ;
    void *Pending_i_new = NULL ; size_t Pending_i_new_size = 0 ;
    void *Pending_j_new = NULL ; size_t Pending_j_new_size = 0 ;
    bool has_Pending_i = (Pending != NULL) && (Pending->i != NULL) ;
    bool has_Pending_j = (Pending != NULL) && (Pending->j != NULL) ;

    size_t psize_new = p_is_32_new ? sizeof (uint32_t) : sizeof (uint64_t) ;
    size_t jsize_new = j_is_32_new ? sizeof (uint32_t) : sizeof (uint64_t) ;
    size_t isize_new = i_is_32_new ? sizeof (uint32_t) : sizeof (uint64_t) ;

    bool ok = true ;

    if (p_is_32 != p_is_32_new && A->p != NULL)
    { 
        // allocate new space for A->p
        Ap_new = GB_MALLOC_MEMORY (plen+1, psize_new, &Ap_new_size) ;
        ok = ok && (Ap_new != NULL) ;
    }

    if (i_is_32 != i_is_32_new)
    { 
        // allocate new space for A->i
        if (A->i != NULL)
        {
            Ai_new = GB_MALLOC_MEMORY (anz, isize_new, &Ai_new_size) ;
            ok = ok && (Ai_new != NULL) ;
        }
        if (has_Pending_i)
        {
            // allocate new space for Pending->i; matches A->i_is_32
            Pending_i_new = GB_MALLOC_MEMORY (nmax_pending, isize_new,
                &Pending_i_new_size) ;
            ok = ok && (Pending_i_new != NULL) ;
        }
    }

    if (j_is_32 != j_is_32_new)
    {
        if (A_is_hyper)
        { 
            // allocate new space for A->h
            Ah_new = GB_MALLOC_MEMORY (plen, jsize_new, &Ah_new_size) ;
            ok = ok && (Ah_new != NULL) ;
        }
        if (Y != NULL)
        { 
            // allocate new space for Y->[phi]; matches A->j_is_32
            Yp_new = GB_MALLOC_MEMORY (yplen+1, jsize_new, &Yp_new_size) ;
            Yi_new = GB_MALLOC_MEMORY (ynz,     jsize_new, &Yi_new_size) ;
            Yx_new = GB_MALLOC_MEMORY (ynz,     jsize_new, &Yx_new_size) ;
            ok = ok && (Yp_new != NULL && Yi_new != NULL && Yx_new != NULL) ;
        }
        if (has_Pending_j)
        { 
            // allocate new space for Pending->j; matches A->j_is_32
            Pending_j_new = GB_MALLOC_MEMORY (nmax_pending, jsize_new,
                &Pending_j_new_size) ;
            ok = ok && (Pending_j_new != NULL) ;
        }
    }

    if (!ok)
    { 
        // out of memory: A is unchanged
        GB_FREE_MEMORY (&Ap_new, Ap_new_size) ;
        GB_FREE_MEMORY (&Ah_new, Ah_new_size) ;
        GB_FREE_MEMORY (&Ai_new, Ai_new_size) ;
        GB_FREE_MEMORY (&Yp_new, Yp_new_size) ;
        GB_FREE_MEMORY (&Yi_new, Yi_new_size) ;
        GB_FREE_MEMORY (&Yx_new, Yx_new_size) ;
        GB_FREE_MEMORY (&Pending_i_new, Pending_i_new_size) ;
        GB_FREE_MEMORY (&Pending_j_new, Pending_j_new_size) ;
        return (GrB_OUT_OF_MEMORY) ;
    }

    // the conversion will now succeed

    //--------------------------------------------------------------------------
    // convert A->p
    //--------------------------------------------------------------------------

    int nthreads_max = GB_Context_nthreads_max ( ) ;

    if (p_is_32 != p_is_32_new && A->p != NULL)
    { 
        GB_cast_int (Ap_new, p_is_32_new ? GB_UINT32_code : GB_UINT64_code,
                     A->p  , p_is_32     ? GB_UINT32_code : GB_UINT64_code,
                     plen+1, nthreads_max) ;
        if (!A->p_shallow)
        { 
            GB_FREE_MEMORY (&(A->p), A->p_size) ;
        }
        A->p = Ap_new ;
        A->p_size = Ap_new_size ;
        A->p_shallow = false ;
    }

    A->p_is_32 = p_is_32_new ;

    //--------------------------------------------------------------------------
    // convert A->i and Pending->i
    //--------------------------------------------------------------------------

    if (i_is_32 != i_is_32_new)
    { 
        bool zombies = (A->nzombies > 0) ;
        GB_Type_code zombie32  = zombies     ? GB_INT32_code  : GB_UINT32_code ;
        GB_Type_code zombie64  = zombies     ? GB_INT32_code  : GB_UINT64_code ;
        GB_Type_code icode_new = i_is_32_new ? zombie32       : zombie64       ;
        GB_Type_code icode     = i_is_32     ? zombie32       : zombie64       ;
        GB_Type_code ucode_new = i_is_32_new ? GB_UINT32_code : GB_UINT64_code ;
        GB_Type_code ucode     = i_is_32     ? GB_UINT32_code : GB_UINT64_code ;

        //----------------------------------------------------------------------
        // convert A->i
        //----------------------------------------------------------------------

        if (A->i != NULL)
        { 
            GB_cast_int (Ai_new, icode_new, A->i, icode, anz, nthreads_max) ;
            if (!A->i_shallow)
            { 
                GB_FREE_MEMORY (&(A->i), A->i_size) ;
            }
            A->i = Ai_new ;
            A->i_size = Ai_new_size ;
            A->i_shallow = false ;
        }

        //----------------------------------------------------------------------
        // convert Pending->i if present
        //----------------------------------------------------------------------

        if (has_Pending_i)
        { 
            GB_cast_int (Pending_i_new, ucode_new, Pending->i, ucode, npending,
                nthreads_max) ;
            GB_FREE_MEMORY (&(Pending->i), Pending->i_size) ;
            Pending->i = Pending_i_new ;
            Pending->i_size = Pending_i_new_size ;
        }
    }

    A->i_is_32 = i_is_32_new ;

    //--------------------------------------------------------------------------
    // convert A->h, Y->p, Y->i, Y->x, and Pending->j
    //--------------------------------------------------------------------------

    if (j_is_32 != j_is_32_new)
    {

        GB_Type_code ucode_new = j_is_32_new ? GB_UINT32_code : GB_UINT64_code ;
        GB_Type_code ucode     = j_is_32     ? GB_UINT32_code : GB_UINT64_code ;

        //----------------------------------------------------------------------
        // convert A->h if present
        //----------------------------------------------------------------------

        if (A_is_hyper)
        { 
            GB_cast_int (Ah_new, ucode_new, A->h, ucode, plen, nthreads_max) ;
            if (!A->h_shallow)
            { 
                GB_FREE_MEMORY (&(A->h), A->h_size) ;
            }
            A->h = Ah_new ;
            A->h_size = Ah_new_size ;
            A->h_shallow = false ;
        }

        //----------------------------------------------------------------------
        // convert A->Y if present
        //----------------------------------------------------------------------

        if (Y != NULL)
        { 
            // A is hypersparse, and the integers of Y match A->j_is_32
            ASSERT (A_is_hyper) ;
            ASSERT (Y->p_is_32 == j_is_32) ;
            ASSERT (Y->j_is_32 == j_is_32) ;
            ASSERT (Y->i_is_32 == j_is_32) ;
            ASSERT_MATRIX_OK (Y, "Y converting integers", GB0) ;

            //------------------------------------------------------------------
            // convert Y->p
            //------------------------------------------------------------------

            GB_cast_int (Yp_new, ucode_new, Y->p, ucode, yplen+1, nthreads_max);
            if (!Y->p_shallow)
            { 
                GB_FREE_MEMORY (&(Y->p), Y->p_size) ;
            }
            Y->p = Yp_new ;
            Y->p_size = Yp_new_size ;
            Y->p_shallow = false ;
            Y->p_is_32 = j_is_32_new ;

            //------------------------------------------------------------------
            // convert Y->i
            //------------------------------------------------------------------

            GB_cast_int (Yi_new, ucode_new, Y->i, ucode, ynz, nthreads_max) ;
            if (!Y->i_shallow)
            { 
                GB_FREE_MEMORY (&(Y->i), Y->i_size) ;
            }
            Y->i = Yi_new ;
            Y->i_size = Yi_new_size ;
            Y->i_shallow = false ;
            Y->i_is_32 = j_is_32_new ;

            //------------------------------------------------------------------
            // convert Y->x
            //------------------------------------------------------------------

            GB_cast_int (Yx_new, ucode_new, Y->x, ucode, ynz, nthreads_max) ;
            if (!Y->x_shallow)
            { 
                GB_FREE_MEMORY (&(Y->x), Y->x_size) ;
            }
            Y->x = Yx_new ;
            Y->x_size = Yx_new_size ;
            Y->x_shallow = false ;
            Y->type = j_is_32_new ? GrB_UINT32 : GrB_UINT64 ;

            //------------------------------------------------------------------
            // revise Y->j_is_32
            //------------------------------------------------------------------

            Y->j_is_32 = j_is_32_new ;
            ASSERT_MATRIX_OK (Y, "Y converted integers", GB0) ;
        }

        //----------------------------------------------------------------------
        // convert Pending->j if present
        //----------------------------------------------------------------------

        if (has_Pending_j)
        { 
            GB_cast_int (Pending_j_new, ucode_new, Pending->j, ucode, npending,
                nthreads_max) ;
            GB_FREE_MEMORY (&(Pending->j), Pending->j_size) ;
            Pending->j = Pending_j_new ;
            Pending->j_size = Pending_j_new_size ;
        }
    }

    A->j_is_32 = j_is_32_new ;

    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------

    ASSERT_MATRIX_OK (A, "A integers converted", GB0) ;
    return (GrB_SUCCESS) ;
}