1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
//------------------------------------------------------------------------------
// GB_convert_s2b: convert from sparse/hypersparse to bitmap
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// The matrix A is converted from sparse/hypersparse to bitmap.
// FUTURE: A could also be typecasted and/or a unary operator applied,
// via the JIT kernel.
#include "apply/GB_apply.h"
#include "jitifyer/GB_stringify.h"
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_FREE_MEMORY (&Cx_new, Cx_size) ; \
GB_FREE_MEMORY (&Cb, Cb_size) ; \
}
GrB_Info GB_convert_s2b // convert sparse/hypersparse to bitmap
(
GrB_Matrix A, // matrix to convert from sparse to bitmap
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
int8_t *restrict Cb = NULL ; size_t Cb_size = 0 ;
GB_void *restrict Cx_new = NULL ; size_t Cx_size = 0 ;
GB_void *restrict Ax_keep = NULL ;
ASSERT_MATRIX_OK (A, "A converting sparse/hypersparse to bitmap", GB0) ;
ASSERT (!GB_IS_FULL (A)) ;
ASSERT (!GB_IS_BITMAP (A)) ;
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ; // A can be jumbled on input
ASSERT (GB_ZOMBIES_OK (A)) ; // A can have zombies on input
//--------------------------------------------------------------------------
// determine the maximum number of threads to use
//--------------------------------------------------------------------------
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
//--------------------------------------------------------------------------
// determine if the conversion can be done in-place
//--------------------------------------------------------------------------
// A->x does not change if A is as-if-full or A is iso
bool A_iso = A->iso ;
bool A_as_if_full = GB_as_if_full (A) ;
bool in_place = A_as_if_full || A_iso ;
//--------------------------------------------------------------------------
// allocate Cb
//--------------------------------------------------------------------------
const int64_t anz = GB_nnz (A) ;
GB_BURBLE_N (anz, "(sparse to bitmap) ") ;
const int64_t avdim = A->vdim ;
const int64_t avlen = A->vlen ;
int64_t anzmax ;
if (!GB_int64_multiply ((uint64_t *) (&anzmax), avdim, avlen))
{
// problem too large
return (GrB_OUT_OF_MEMORY) ;
}
anzmax = GB_IMAX (anzmax, 1) ;
Cb = GB_MALLOC_MEMORY (anzmax, sizeof (int8_t), &Cb_size) ;
if (Cb == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// allocate the new A->x
//--------------------------------------------------------------------------
const size_t asize = A->type->size ;
bool Ax_shallow ;
if (in_place)
{
// keep the existing A->x
Ax_keep = (GB_void *) A->x ;
Ax_shallow = A->x_shallow ; Cx_size = A->x_size ;
}
else
{
// A->x must be modified to fit the bitmap structure. A->x is calloc'd
// since otherwise it would contain uninitialized values where A->b is
// false and entries are not present.
Cx_new = GB_CALLOC_MEMORY (anzmax, asize, &Cx_size) ;
Ax_shallow = false ;
if (Cx_new == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
Ax_keep = Cx_new ;
}
//--------------------------------------------------------------------------
// scatter the pattern and values into the new bitmap
//--------------------------------------------------------------------------
int64_t nzombies = A->nzombies ;
if (A_as_if_full)
{
//----------------------------------------------------------------------
// the sparse A has all entries or is iso: convert in-place
//----------------------------------------------------------------------
ASSERT (nzombies == 0) ;
// set all of Cb [0..anz-1] to 1, in parallel
GB_memset (Cb, 1, anz, nthreads_max) ;
info = GrB_SUCCESS ;
}
else
{
//----------------------------------------------------------------------
// set all of Cb to zero
//----------------------------------------------------------------------
GB_memset (Cb, 0, anzmax, nthreads_max) ;
//----------------------------------------------------------------------
// scatter the values and pattern of A into the bitmap
//----------------------------------------------------------------------
int A_nthreads, A_ntasks ;
GB_SLICE_MATRIX (A, 8) ;
info = GrB_NO_VALUE ;
if (A_iso)
{
//------------------------------------------------------------------
// via the iso kernel
//------------------------------------------------------------------
// A is iso; numerical entries are not modified
#undef GB_COPY
#define GB_COPY(Cx,pC,Ax,pA) ;
#include "convert/template/GB_convert_s2b_template.c"
info = GrB_SUCCESS ;
}
else
{
//------------------------------------------------------------------
// via the built-in kernel
//------------------------------------------------------------------
#ifndef GBCOMPACT
GB_IF_FACTORY_KERNELS_ENABLED
{
switch (asize)
{
#undef GB_COPY
#define GB_COPY(Cx,pC,Ax,pA) Cx [pC] = Ax [pA] ;
case GB_1BYTE : // uint8, int8, bool, or 1-byte user
#define GB_A_TYPE uint8_t
#include "convert/template/GB_convert_s2b_template.c"
info = GrB_SUCCESS ;
break ;
case GB_2BYTE : // uint16, int16, or 2-byte user-defined
#define GB_A_TYPE uint16_t
#include "convert/template/GB_convert_s2b_template.c"
info = GrB_SUCCESS ;
break ;
case GB_4BYTE : // uint32, int32, float, or 4-byte user
#define GB_A_TYPE uint32_t
#include "convert/template/GB_convert_s2b_template.c"
info = GrB_SUCCESS ;
break ;
case GB_8BYTE : // uint64, int64, double, float complex,
// or 8-byte user defined
#define GB_A_TYPE uint64_t
#include "convert/template/GB_convert_s2b_template.c"
info = GrB_SUCCESS ;
break ;
case GB_16BYTE : // double complex or 16-byte user-defined
#define GB_A_TYPE GB_blob16
#include "convert/template/GB_convert_s2b_template.c"
info = GrB_SUCCESS ;
break ;
default:;
}
}
#endif
//------------------------------------------------------------------
// via the JIT or PreJIT kernel
//------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
struct GB_UnaryOp_opaque op_header ;
GB_Operator op = GB_unop_identity (A->type, &op_header) ;
ASSERT_OP_OK (op, "identity op for convert s2b", GB0) ;
info = GB_convert_s2b_jit (Cx_new, Cb, op,
A, A_ek_slicing, A_ntasks, A_nthreads) ;
}
//------------------------------------------------------------------
// via the generic kernel
//------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
// with user-defined types of other sizes
GBURBLE ("(generic convert) ") ;
#define GB_A_TYPE GB_void
#undef GB_COPY
#define GB_COPY(Cx,pC,Ax,pA) \
memcpy (Cx +(pC)*asize, Ax +(pA)*asize, asize)
#include "convert/template/GB_convert_s2b_template.c"
info = GrB_SUCCESS ;
}
}
}
if (info != GrB_SUCCESS)
{
// out of memory, or other error
GB_FREE_ALL ;
return (info) ;
}
//--------------------------------------------------------------------------
// free prior content of A and transplant the new content
//--------------------------------------------------------------------------
if (in_place)
{
// if in-place, remove A->x from A so it is not freed
A->x = NULL ;
A->x_shallow = false ;
}
GB_phybix_free (A) ;
A->iso = A_iso ;
A->b = Cb ; A->b_size = Cb_size ; A->b_shallow = false ;
Cb = NULL ;
A->x = Ax_keep ; A->x_size = Cx_size ; A->x_shallow = Ax_shallow ;
A->nvals = anz - nzombies ;
ASSERT (A->nzombies == 0) ;
A->plen = -1 ;
A->nvec = avdim ;
// A->nvec_nonempty = (avlen == 0) ? 0 : avdim ;
GB_nvec_nonempty_set (A, (avlen == 0) ? 0 : avdim) ;
A->p_is_32 = false ; // OK: bitmap always has p_is_32 = false
A->j_is_32 = false ; // OK: bitmap always has j_is_32 = false
A->i_is_32 = false ; // OK: bitmap always has i_is_32 = false
A->magic = GB_MAGIC ;
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
ASSERT_MATRIX_OK (A, "A converted from sparse to bitmap", GB0) ;
ASSERT (GB_IS_BITMAP (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
return (GrB_SUCCESS) ;
}
|