1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
//------------------------------------------------------------------------------
// GB_emult_02: C = A.*B where A is sparse/hyper and B is bitmap/full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C = A.*B where A is sparse/hyper and B is bitmap/full constructs C with
// the same sparsity structure as A.
// When no mask is present, or the mask is applied later, this method handles
// the following cases:
// ------------------------------------------
// C = A .* B
// ------------------------------------------
// sparse . sparse bitmap
// sparse . sparse full
// If M is sparse/hyper and complemented, it is not passed here:
// ------------------------------------------
// C <!M>= A .* B
// ------------------------------------------
// sparse sparse sparse bitmap (mask later)
// sparse sparse sparse full (mask later)
// If M is present, it is bitmap/full:
// ------------------------------------------
// C <M> = A .* B
// ------------------------------------------
// sparse bitmap sparse bitmap
// sparse bitmap sparse full
// ------------------------------------------
// C <M> = A .* B
// ------------------------------------------
// sparse full sparse bitmap
// sparse full sparse full
// ------------------------------------------
// C <!M> = A .* B
// ------------------------------------------
// sparse bitmap sparse bitmap
// sparse bitmap sparse full
// ------------------------------------------
// C <!M> = A .* B
// ------------------------------------------
// sparse full sparse bitmap
// sparse full sparse full
#include "ewise/GB_ewise.h"
#include "emult/GB_emult.h"
#include "binaryop/GB_binop.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_ew__include.h"
#endif
#define GB_FREE_WORKSPACE \
{ \
GB_WERK_POP (Work, uint64_t) ; \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
GrB_Info GB_emult_02 // C=A.*B when A is sparse/hyper, B bitmap/full
(
GrB_Matrix C, // output matrix, static header
const GrB_Type ctype, // type of output matrix C
const bool C_is_csc, // format of output matrix C
const GrB_Matrix M, // optional mask, unused if NULL
const bool Mask_struct, // if true, use the only structure of M
const bool Mask_comp, // if true, use !M
const GrB_Matrix A, // input A matrix (sparse/hyper)
const GrB_Matrix B, // input B matrix (bitmap/full)
GrB_BinaryOp op, // op to perform C = op (A,B)
const bool flipij, // if true, i,j must be flipped
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for emult_02", GB0) ;
ASSERT_MATRIX_OK (A, "A for emult_02", GB0) ;
ASSERT_MATRIX_OK (B, "B for emult_02", GB0) ;
ASSERT_BINARYOP_OK (op, "op for emult_02", GB0) ;
ASSERT_TYPE_OK (ctype, "ctype for emult_02", GB0) ;
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT (GB_JUMBLED_OK (A)) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
ASSERT (M == NULL || GB_IS_BITMAP (M) || GB_IS_FULL (M)) ;
int C_sparsity = GB_sparsity (A) ;
if (M == NULL)
{
GBURBLE ("emult_02:(%s=%s.*%s)",
GB_sparsity_char (C_sparsity),
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
}
else
{
GBURBLE ("emult_02:(%s<%s%s%s>=%s.*%s) ",
GB_sparsity_char (C_sparsity),
Mask_comp ? "!" : "",
GB_sparsity_char_matrix (M),
Mask_struct ? ",struct" : "",
GB_sparsity_char_matrix (A),
GB_sparsity_char_matrix (B)) ;
}
//--------------------------------------------------------------------------
// declare workspace
//--------------------------------------------------------------------------
GB_WERK_DECLARE (Work, uint64_t) ;
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
//--------------------------------------------------------------------------
// get M, A, and B
//--------------------------------------------------------------------------
const int8_t *restrict Mb = (M == NULL) ? NULL : M->b ;
const GB_M_TYPE *restrict Mx = (M == NULL || Mask_struct) ? NULL :
(const GB_M_TYPE *) M->x ;
const size_t msize = (M == NULL) ? 0 : M->type->size ;
const int64_t vlen = A->vlen ;
const int64_t vdim = A->vdim ;
const int64_t nvec = A->nvec ;
const int64_t anz = GB_nnz (A) ;
const int8_t *restrict Bb = B->b ;
const bool B_is_bitmap = GB_IS_BITMAP (B) ;
//--------------------------------------------------------------------------
// check if C is iso and compute its iso value if it is
//--------------------------------------------------------------------------
const size_t csize = ctype->size ;
GB_void cscalar [GB_VLA(csize)] ;
bool C_iso = GB_emult_iso (cscalar, ctype, A, B, op) ;
//--------------------------------------------------------------------------
// allocate C->p and C->h
//--------------------------------------------------------------------------
GB_OK (GB_new (&C, // sparse or hyper (same as A), existing header
ctype, vlen, vdim, GB_ph_calloc, C_is_csc,
C_sparsity, A->hyper_switch, nvec,
A->p_is_32, A->j_is_32, A->i_is_32)) ;
ASSERT (C->p_is_32 == A->p_is_32) ;
ASSERT (C->j_is_32 == A->j_is_32) ;
ASSERT (C->i_is_32 == A->i_is_32) ;
//--------------------------------------------------------------------------
// slice the input matrix A
//--------------------------------------------------------------------------
int A_nthreads, A_ntasks ;
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
GB_SLICE_MATRIX (A, 8) ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
GB_WERK_PUSH (Work, 3*A_ntasks, uint64_t) ;
if (Work == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
uint64_t *restrict Wfirst = Work ;
uint64_t *restrict Wlast = Work + A_ntasks ;
uint64_t *restrict Cp_kfirst = Work + A_ntasks * 2 ;
//--------------------------------------------------------------------------
// phase1: count entries in C and allocate C->i and C->x
//--------------------------------------------------------------------------
GB_OK (GB_emult_02_phase1 (C, C_iso, M, Mask_struct, Mask_comp, A, B,
A_ek_slicing, A_ntasks, A_nthreads, Wfirst, Wlast, Cp_kfirst, Werk)) ;
//--------------------------------------------------------------------------
// get the opcode for phase2
//--------------------------------------------------------------------------
GB_Opcode opcode = op->opcode ;
bool op_is_builtin_positional =
GB_IS_BUILTIN_BINOP_CODE_POSITIONAL (opcode) ;
bool op_is_index_binop = GB_IS_INDEXBINARYOP_CODE (opcode) ;
bool op_is_positional = op_is_builtin_positional || op_is_index_binop ;
bool op_is_first = (opcode == GB_FIRST_binop_code) ;
bool op_is_second = (opcode == GB_SECOND_binop_code) ;
bool op_is_pair = (opcode == GB_PAIR_binop_code) ;
GB_Type_code ccode = ctype->code ;
//--------------------------------------------------------------------------
// check if the values of A and/or B are ignored
//--------------------------------------------------------------------------
// With C = ewisemult (A,B), only the intersection of A and B is used.
// If op is SECOND or PAIR, the values of A are never accessed.
// If op is FIRST or PAIR, the values of B are never accessed.
// If op is PAIR, the values of A and B are never accessed.
// Contrast with ewiseadd.
// A is passed as x, and B as y, in z = op(x,y)
bool A_is_pattern = op_is_second || op_is_pair || op_is_builtin_positional ;
bool B_is_pattern = op_is_first || op_is_pair || op_is_builtin_positional ;
//--------------------------------------------------------------------------
// using a built-in binary operator (except for positional operators)
//--------------------------------------------------------------------------
info = GrB_NO_VALUE ;
if (C_iso)
{
//----------------------------------------------------------------------
// via the iso kernel
//----------------------------------------------------------------------
// Cx [0] = cscalar = op (A,B)
GB_BURBLE_MATRIX (C, "(iso emult) ") ;
memcpy (C->x, cscalar, csize) ;
// pattern of C = set intersection of pattern of A and B
#define GB_ISO_EMULT
#include "emult/template/GB_emult_02_template.c"
info = GrB_SUCCESS ;
}
else
{
//----------------------------------------------------------------------
// via the factory kernel
//----------------------------------------------------------------------
#ifndef GBCOMPACT
GB_IF_FACTORY_KERNELS_ENABLED
{
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_AemultB_02(mult,xname) GB (_AemultB_02_ ## mult ## xname)
#define GB_BINOP_WORKER(mult,xname) \
{ \
info = GB_AemultB_02(mult,xname) (C, \
M, Mask_struct, Mask_comp, A, B, \
Cp_kfirst, A_ek_slicing, A_ntasks, A_nthreads) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
GB_Type_code xcode, ycode, zcode ;
if (!op_is_positional &&
GB_binop_builtin (A->type, A_is_pattern, B->type, B_is_pattern,
op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
{
#define GB_NO_PAIR
#include "binaryop/factory/GB_binop_factory.c"
}
}
#endif
}
//--------------------------------------------------------------------------
// via the JIT or PreJIT kernel
//--------------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_emult_02_jit (C, C_sparsity, M, Mask_struct,
Mask_comp, op, flipij, A, B, Cp_kfirst, A_ek_slicing, A_ntasks,
A_nthreads) ;
}
//--------------------------------------------------------------------------
// via the generic kernel
//--------------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
GB_BURBLE_MATRIX (C, "(generic emult_02: %s) ", op->name) ;
info = GB_emult_generic (C, op, flipij, NULL, 0, 0,
NULL, NULL, NULL, C_sparsity, GB_EMULT_METHOD2, Cp_kfirst,
NULL, 0, 0, A_ek_slicing, A_ntasks, A_nthreads, NULL, 0, 0,
M, Mask_struct, Mask_comp, A, B) ;
}
//--------------------------------------------------------------------------
// remove empty vectors from C, if hypersparse
//--------------------------------------------------------------------------
if (info != GrB_SUCCESS)
{
// out of memory, or other error
GB_FREE_ALL ;
return (info) ;
}
GB_OK (GB_hyper_prune (C, Werk)) ;
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
ASSERT_MATRIX_OK (C, "C output for emult_02", GB0) ;
return (GrB_SUCCESS) ;
}
|