1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
//------------------------------------------------------------------------------
// GB_emult_02_phase1: C = A.*B where A is sparse/hyper and B is bitmap/full
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// JIT: not needed: factory cases: mask types, M bitmap/full, B bitmap/full,
// A sparse/hyper
// Symbolic analysis phase for GB_emult_02 and GB_emult_03.
#define GB_FREE_ALL ;
#include "ewise/GB_ewise.h"
#include "emult/GB_emult.h"
#include "binaryop/GB_binop.h"
#include "jitifyer/GB_stringify.h"
#include "slice/factory/GB_ek_slice_merge.h"
GrB_Info GB_emult_02_phase1 // symbolic analysis for GB_emult_02 and GB_emult_03
(
// input/output:
GrB_Matrix C,
// input:
const bool C_iso,
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_Matrix A,
const GrB_Matrix B,
const int64_t *restrict A_ek_slicing,
const int A_ntasks,
const int A_nthreads,
// workspace:
uint64_t *restrict Wfirst,
uint64_t *restrict Wlast,
// output:
uint64_t *Cp_kfirst,
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// get C, M, A, and B
//--------------------------------------------------------------------------
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
ASSERT ((M == NULL) || GB_IS_BITMAP (M) || GB_IS_FULL (M)) ;
GrB_Info info ;
const int8_t *restrict Mb = (M == NULL) ? NULL : M->b ;
const GB_M_TYPE *restrict Mx = (M == NULL || Mask_struct) ? NULL :
(const GB_M_TYPE *) M->x ;
const size_t msize = (M == NULL) ? 0 : M->type->size ;
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
GB_Ai_DECLARE (Ai, const) ; GB_Ai_PTR (Ai, A) ;
const int64_t vlen = A->vlen ;
const int64_t nvec = A->nvec ;
const int64_t anz = GB_nnz (A) ;
const int8_t *restrict Bb = B->b ;
const bool B_is_bitmap = GB_IS_BITMAP (B) ;
GB_Cp_DECLARE (Cp, ) ; GB_Cp_PTR (Cp, C) ;
const bool Cp_is_32 = C->p_is_32 ;
const bool Cj_is_32 = C->j_is_32 ;
const bool Ci_is_32 = C->i_is_32 ;
ASSERT (C->p_is_32 == A->p_is_32) ;
ASSERT (C->j_is_32 == A->j_is_32) ;
ASSERT (C->i_is_32 == A->i_is_32) ;
const int64_t *restrict kfirst_Aslice = A_ek_slicing ;
const int64_t *restrict klast_Aslice = A_ek_slicing + A_ntasks ;
const int64_t *restrict pstart_Aslice = A_ek_slicing + A_ntasks * 2 ;
//--------------------------------------------------------------------------
// count entries in C
//--------------------------------------------------------------------------
// C->nvec_nonempty = A->nvec_nonempty ;
GB_nvec_nonempty_set (C, GB_nvec_nonempty_get (A)) ;
C->nvec = nvec ;
const bool C_has_pattern_of_A = !B_is_bitmap && (M == NULL) ;
if (!C_has_pattern_of_A)
{
// This phase is very similar to GB_select_entry_phase1_template.c.
if (M == NULL)
{
//------------------------------------------------------------------
// Method2/3(a): C = A.*B where A is sparse/hyper and B is bitmap
//------------------------------------------------------------------
ASSERT (GB_IS_BITMAP (B)) ;
int tid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < A_ntasks ; tid++)
{
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
Wfirst [tid] = 0 ;
Wlast [tid] = 0 ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
// count the entries in C(:,j)
int64_t j = GBh_A (Ah, k) ;
int64_t pB_start = j * vlen ;
GB_GET_PA (pA, pA_end, tid, k, kfirst, klast, pstart_Aslice,
GB_IGET (Ap, k), GB_IGET (Ap, k+1)) ;
int64_t cjnz = 0 ;
for ( ; pA < pA_end ; pA++)
{
cjnz += Bb [pB_start + GB_IGET (Ai, pA)] ;
}
if (k == kfirst)
{
Wfirst [tid] = cjnz ;
}
else if (k == klast)
{
Wlast [tid] = cjnz ;
}
else
{
GB_ISET (Cp, k, cjnz) ; // Cp [k] = cjnz ;
}
}
}
}
else
{
//------------------------------------------------------------------
// Method2/3(c): C<#M> = A.*B; A is sparse/hyper; M, B bitmap/full
//------------------------------------------------------------------
ASSERT (M != NULL) ;
ASSERT (GB_IS_BITMAP (M) || GB_IS_FULL (M)) ;
ASSERT (GB_IS_BITMAP (B) || GB_IS_FULL (B)) ;
int tid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < A_ntasks ; tid++)
{
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
Wfirst [tid] = 0 ;
Wlast [tid] = 0 ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
// count the entries in C(:,j)
int64_t j = GBh_A (Ah, k) ;
int64_t pB_start = j * vlen ;
GB_GET_PA (pA, pA_end, tid, k, kfirst, klast, pstart_Aslice,
GB_IGET (Ap, k), GB_IGET (Ap, k+1)) ;
int64_t cjnz = 0 ;
for ( ; pA < pA_end ; pA++)
{
int64_t i = GB_IGET (Ai, pA) ;
int64_t pB = pB_start + i ;
bool mij = GBb_M (Mb, pB) && GB_MCAST (Mx, pB, msize) ;
mij = mij ^ Mask_comp ;
cjnz += (mij && GBb_M (Bb, pB)) ;
}
if (k == kfirst)
{
Wfirst [tid] = cjnz ;
}
else if (k == klast)
{
Wlast [tid] = cjnz ;
}
else
{
GB_ISET (Cp, k, cjnz) ; // Cp [k] = cjnz ;
}
}
}
}
//----------------------------------------------------------------------
// finalize Cp, cumulative sum of Cp and compute Cp_kfirst
//----------------------------------------------------------------------
GB_ek_slice_merge1 (Cp, Cp_is_32,
Wfirst, Wlast, A_ek_slicing, A_ntasks) ;
int64_t nvec_nonempty ;
GB_cumsum (Cp, Cp_is_32, nvec, &nvec_nonempty, A_nthreads, Werk) ;
GB_nvec_nonempty_set (C, nvec_nonempty) ;
GB_ek_slice_merge2 (Cp_kfirst, Cp, Cp_is_32,
Wfirst, Wlast, A_ek_slicing, A_ntasks) ;
}
//--------------------------------------------------------------------------
// allocate C->i and C->x
//--------------------------------------------------------------------------
int64_t cnz = (C_has_pattern_of_A) ? anz : GB_IGET (Cp, nvec) ;
GB_OK (GB_bix_alloc (C, cnz, GxB_SPARSE, false, true, C_iso)) ;
//--------------------------------------------------------------------------
// copy pattern into C
//--------------------------------------------------------------------------
// FUTURE: could make these components of C shallow instead of memcpy
size_t cpsize = Cp_is_32 ? sizeof (uint32_t) : sizeof (uint64_t) ;
size_t cjsize = Cj_is_32 ? sizeof (uint32_t) : sizeof (uint64_t) ;
size_t cisize = Ci_is_32 ? sizeof (uint32_t) : sizeof (uint64_t) ;
if (GB_IS_HYPERSPARSE (A))
{
// copy A->h into C->h
GB_memcpy (C->h, Ah, nvec * cjsize, A_nthreads) ;
}
if (C_has_pattern_of_A)
{
// Method2/3(b): B is full and no mask present, so the pattern of C is
// the same as the pattern of A
GB_memcpy (Cp, Ap, (nvec+1) * cpsize, A_nthreads) ;
GB_memcpy (C->i, Ai, cnz * cisize, A_nthreads) ;
}
C->nvals = cnz ;
C->jumbled = A->jumbled ;
C->magic = GB_MAGIC ;
return (GrB_SUCCESS) ;
}
|