1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
|
//------------------------------------------------------------------------------
// GB_emult_08_phase0: find vectors of C to compute for C=A.*B or C<M>=A.*B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// The eWise multiply of two matrices, C=A.*B, C<M>=A.*B, or C<!M>=A.*B starts
// with this phase, which determines which vectors of C need to be computed.
// On input, A and B are the two matrices being ewise multiplied, and M is the
// optional mask matrix. If present, it is not complemented.
// The M, A, and B matrices are sparse or hypersparse. C will be sparse
// (if Ch is returned NULL) or hypersparse (if Ch is returned non-NULL).
// Ch: the vectors to compute in C. Not allocated, either NULL if C is
// not hypersparse, or shallow and equal to A->h, B->h, or M->h. Ch is
// never allocated.
// C_to_A: if A is hypersparse, and Ch is not A->h, then C_to_A [k] = kA
// if the kth vector j = Ch [k] is equal to Ah [kA]. If j does not appear
// in A, then C_to_A [k] = -1. C is always hypersparse in this case.
// Otherwise, C_to_A is returned as NULL.
// C_to_B: if B is hypersparse, and Ch is not B->h, then C_to_B [k] = kB
// if the kth vector j = Ch [k] is equal to Bh [kB]. If j does not appear
// in B, then C_to_B [k] = -1. C is always hypersparse in this case.
// Otherwise, C_to_B is returned as NULL.
// C_to_M: if M is hypersparse, and Ch is not M->h, then C_to_M [k] = kM
// if the kth vector j = Ch [k] is equal to Mh [kM]. If j does not appear
// in M, then C_to_M [k] = -1. C is always hypersparse in this case.
// Otherwise, C_to_M is returned as NULL.
// FUTURE:: exploit A==M, B==M, and A==B aliases
#define GB_FREE_ALL \
{ \
GB_FREE_MEMORY (&C_to_M, C_to_M_size) ; \
GB_FREE_MEMORY (&C_to_A, C_to_A_size) ; \
GB_FREE_MEMORY (&C_to_B, C_to_B_size) ; \
}
#include "emult/GB_emult.h"
GrB_Info GB_emult_08_phase0 // find vectors in C for C=A.*B or C<M>=A.*B
(
int64_t *p_Cnvec, // # of vectors to compute in C
const void **Ch_handle, // Ch is M->h, A->h, B->h, or NULL
size_t *Ch_size_handle,
int64_t *restrict *C_to_M_handle, // C_to_M: size Cnvec, or NULL
size_t *C_to_M_size_handle,
int64_t *restrict *C_to_A_handle, // C_to_A: size Cnvec, or NULL
size_t *C_to_A_size_handle,
int64_t *restrict *C_to_B_handle, // C_to_B: size Cnvec, or NULL
size_t *C_to_B_size_handle,
bool *p_Cp_is_32, // if true, Cp is 32-bit; else 64-bit
bool *p_Cj_is_32, // if true, Ch is 32-bit; else 64-bit
bool *p_Ci_is_32, // if true, Ci is 32-bit; else 64-bit
int *C_sparsity, // sparsity structure of C
// original input:
const GrB_Matrix M, // optional mask, may be NULL
const bool Mask_comp,
const GrB_Matrix A,
const GrB_Matrix B,
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
// M, A, and B can be jumbled for this phase
GrB_Info info ;
ASSERT (p_Cnvec != NULL) ;
ASSERT (Ch_handle != NULL) ;
ASSERT (Ch_size_handle != NULL) ;
ASSERT (p_Cp_is_32 != NULL) ;
ASSERT (p_Cj_is_32 != NULL) ;
ASSERT (p_Ci_is_32 != NULL) ;
ASSERT (C_to_A_handle != NULL) ;
ASSERT (C_to_B_handle != NULL) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for emult phase0", GB0) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (GB_JUMBLED_OK (M)) ; // pattern not accessed
ASSERT (!GB_PENDING (M)) ;
ASSERT_MATRIX_OK (A, "A for emult phase0", GB0) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (GB_JUMBLED_OK (B)) ; // pattern not accessed
ASSERT (!GB_PENDING (A)) ;
ASSERT_MATRIX_OK (B, "B for emult phase0", GB0) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT (GB_JUMBLED_OK (A)) ; // pattern not accessed
ASSERT (!GB_PENDING (B)) ;
ASSERT (A->vdim == B->vdim) ;
ASSERT (A->vlen == B->vlen) ;
ASSERT (GB_IMPLIES (M != NULL, A->vdim == M->vdim)) ;
ASSERT (GB_IMPLIES (M != NULL, A->vlen == M->vlen)) ;
//--------------------------------------------------------------------------
// initializations
//--------------------------------------------------------------------------
(*p_Cnvec) = 0 ;
(*Ch_handle) = NULL ;
(*Ch_size_handle) = 0 ;
if (C_to_M_handle != NULL)
{
(*C_to_M_handle) = NULL ;
}
(*C_to_A_handle) = NULL ;
(*C_to_B_handle) = NULL ;
ASSERT ((*C_sparsity) == GxB_SPARSE || (*C_sparsity) == GxB_HYPERSPARSE) ;
GB_MDECL (Ch, , u) ; size_t Ch_size = 0 ;
int64_t *restrict C_to_M = NULL ; size_t C_to_M_size = 0 ;
int64_t *restrict C_to_A = NULL ; size_t C_to_A_size = 0 ;
int64_t *restrict C_to_B = NULL ; size_t C_to_B_size = 0 ;
//--------------------------------------------------------------------------
// get content of M, A, and B
//--------------------------------------------------------------------------
int64_t n = A->vdim ;
int64_t Anvec = A->nvec ;
void *Ah = A->h ;
bool A_is_hyper = (Ah != NULL) ;
int64_t Bnvec = B->nvec ;
void *Bh = B->h ;
bool B_is_hyper = (Bh != NULL) ;
int64_t Mnvec = 0 ;
void *Mh = NULL ;
bool M_is_hyper = false ;
if (M != NULL)
{
Mnvec = M->nvec ;
Mh = M->h ;
M_is_hyper = (Mh != NULL) ;
}
//--------------------------------------------------------------------------
// determine the p_is_32, j_is_32, and i_is_32 settings for the new matrix
//--------------------------------------------------------------------------
bool Cp_is_32, Cj_is_32, Ci_is_32 ;
int64_t anz = GB_nnz (A) ;
int64_t bnz = GB_nnz (B) ;
int64_t cnz = GB_IMIN (anz, bnz) ;
if (M != NULL && !Mask_comp)
{
int64_t mnz = GB_nnz (M) ;
cnz = GB_IMIN (cnz, mnz) ;
}
GB_determine_pji_is_32 (&Cp_is_32, &Cj_is_32, &Ci_is_32,
GxB_AUTO_SPARSITY, cnz, A->vlen, A->vdim, Werk) ;
//--------------------------------------------------------------------------
// determine if C is sparse or hypersparse, and find its hyperlist
//--------------------------------------------------------------------------
int64_t Cnvec ;
if (M != NULL)
{
//----------------------------------------------------------------------
// 8 cases to consider: A, B, M can each be hyper or sparse
//----------------------------------------------------------------------
// Mask is present and not complemented
if (A_is_hyper)
{
if (B_is_hyper)
{
if (M_is_hyper)
{
//----------------------------------------------------------
// (1) A hyper, B hyper, M hyper: C hyper
//----------------------------------------------------------
// Ch = smaller of Mh, Bh, Ah
(*C_sparsity) = GxB_HYPERSPARSE ;
Cnvec = GB_IMIN (Anvec, Bnvec) ;
Cnvec = GB_IMIN (Cnvec, Mnvec) ;
if (Cnvec == Anvec)
{
Ch = Ah ; Ch_size = A->h_size ;
Cj_is_32 = A->j_is_32 ;
}
else if (Cnvec == Bnvec)
{
Ch = Bh ; Ch_size = B->h_size ;
Cj_is_32 = B->j_is_32 ;
}
else // (Cnvec == Mnvec)
{
Ch = Mh ; Ch_size = M->h_size ;
Cj_is_32 = M->j_is_32 ;
}
}
else
{
//----------------------------------------------------------
// (2) A hyper, B hyper, M sparse: C hyper
//----------------------------------------------------------
// Ch = smaller of Ah, Bh
(*C_sparsity) = GxB_HYPERSPARSE ;
if (Anvec <= Bnvec)
{
Ch = Ah ; Ch_size = A->h_size ;
Cj_is_32 = A->j_is_32 ;
Cnvec = Anvec ;
}
else
{
Ch = Bh ; Ch_size = B->h_size ;
Cj_is_32 = B->j_is_32 ;
Cnvec = Bnvec ;
}
}
}
else
{
if (M_is_hyper)
{
//----------------------------------------------------------
// (3) A hyper, B sparse, M hyper: C hyper
//----------------------------------------------------------
// Ch = smaller of Mh, Ah
(*C_sparsity) = GxB_HYPERSPARSE ;
if (Anvec <= Mnvec)
{
Ch = Ah ; Ch_size = A->h_size ;
Cj_is_32 = A->j_is_32 ;
Cnvec = Anvec ;
}
else
{
Ch = Mh ; Ch_size = M->h_size ;
Cj_is_32 = M->j_is_32 ;
Cnvec = Mnvec ;
}
}
else
{
//----------------------------------------------------------
// (4) A hyper, B sparse, M sparse: C hyper
//----------------------------------------------------------
(*C_sparsity) = GxB_HYPERSPARSE ;
Ch = Ah ; Ch_size = A->h_size ;
Cj_is_32 = A->j_is_32 ;
Cnvec = Anvec ;
}
}
}
else
{
if (B_is_hyper)
{
if (M_is_hyper)
{
//----------------------------------------------------------
// (5) A sparse, B hyper, M hyper: C hyper
//----------------------------------------------------------
// Ch = smaller of Mh, Bh
(*C_sparsity) = GxB_HYPERSPARSE ;
if (Bnvec <= Mnvec)
{
Ch = Bh ; Ch_size = B->h_size ;
Cj_is_32 = B->j_is_32 ;
Cnvec = Bnvec ;
}
else
{
Ch = Mh ; Ch_size = M->h_size ;
Cj_is_32 = M->j_is_32 ;
Cnvec = Mnvec ;
}
}
else
{
//----------------------------------------------------------
// (6) A sparse, B hyper, M sparse: C hyper
//----------------------------------------------------------
(*C_sparsity) = GxB_HYPERSPARSE ;
Ch = Bh ; Ch_size = B->h_size ;
Cj_is_32 = B->j_is_32 ;
Cnvec = Bnvec ;
}
}
else
{
if (M_is_hyper)
{
//----------------------------------------------------------
// (7) A sparse, B sparse, M hyper: C hyper
//----------------------------------------------------------
(*C_sparsity) = GxB_HYPERSPARSE ;
Ch = Mh ; Ch_size = M->h_size ;
Cj_is_32 = M->j_is_32 ;
Cnvec = Mnvec ;
}
else
{
//----------------------------------------------------------
// (8) A sparse, B sparse, M sparse: C sparse
//----------------------------------------------------------
(*C_sparsity) = GxB_SPARSE ;
Ch = NULL ;
Cnvec = n ;
}
}
}
}
else
{
//----------------------------------------------------------------------
// 4 cases to consider: A, B can be hyper or sparse
//----------------------------------------------------------------------
// Mask is not present, or present and complemented.
if (A_is_hyper)
{
if (B_is_hyper)
{
//--------------------------------------------------------------
// (1) A hyper, B hyper: C hyper
//--------------------------------------------------------------
// Ch = smaller of Ah, Bh
(*C_sparsity) = GxB_HYPERSPARSE ;
if (Anvec <= Bnvec)
{
Ch = Ah ; Ch_size = A->h_size ;
Cj_is_32 = A->j_is_32 ;
Cnvec = Anvec ;
}
else
{
Ch = Bh ; Ch_size = B->h_size ;
Cj_is_32 = B->j_is_32 ;
Cnvec = Bnvec ;
}
}
else
{
//--------------------------------------------------------------
// (2) A hyper, B sparse: C hyper
//--------------------------------------------------------------
(*C_sparsity) = GxB_HYPERSPARSE ;
Ch = Ah ; Ch_size = A->h_size ;
Cj_is_32 = A->j_is_32 ;
Cnvec = Anvec ;
}
}
else
{
if (B_is_hyper)
{
//--------------------------------------------------------------
// (3) A sparse, B hyper: C hyper
//--------------------------------------------------------------
(*C_sparsity) = GxB_HYPERSPARSE ;
Ch = Bh ; Ch_size = B->h_size ;
Cj_is_32 = B->j_is_32 ;
Cnvec = Bnvec ;
}
else
{
//--------------------------------------------------------------
// (4) A sparse, B sparse: C sparse
//--------------------------------------------------------------
(*C_sparsity) = GxB_SPARSE ;
Ch = NULL ;
Cnvec = n ;
}
}
}
GB_IPTR (Ch, Cj_is_32) ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
int nthreads = GB_nthreads (Cnvec, chunk, nthreads_max) ;
//--------------------------------------------------------------------------
// construct C_to_M mapping
//--------------------------------------------------------------------------
if (M_is_hyper && Ch != Mh)
{
// allocate C_to_M
ASSERT (Ch != NULL) ;
C_to_M = GB_MALLOC_MEMORY (Cnvec, sizeof (int64_t), &C_to_M_size) ;
if (C_to_M == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
// create the M->Y hyper_hash
GB_OK (GB_hyper_hash_build (M, Werk)) ;
const void *Mp = M->p ;
const void *M_Yp = (M->Y == NULL) ? NULL : M->Y->p ;
const void *M_Yi = (M->Y == NULL) ? NULL : M->Y->i ;
const void *M_Yx = (M->Y == NULL) ? NULL : M->Y->x ;
const int64_t M_hash_bits = (M->Y == NULL) ? 0 : (M->Y->vdim - 1) ;
// compute C_to_M
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < Cnvec ; k++)
{
int64_t pM, pM_end ;
int64_t j = GB_IGET (Ch, k) ;
int64_t kM = GB_hyper_hash_lookup (M->p_is_32, M->j_is_32,
Mh, Mnvec, Mp, M_Yp, M_Yi, M_Yx, M_hash_bits, j, &pM, &pM_end) ;
C_to_M [k] = (pM < pM_end) ? kM : -1 ;
}
}
//--------------------------------------------------------------------------
// construct C_to_A mapping
//--------------------------------------------------------------------------
if (A_is_hyper && Ch != Ah)
{
// allocate C_to_A
ASSERT (Ch != NULL) ;
C_to_A = GB_MALLOC_MEMORY (Cnvec, sizeof (int64_t), &C_to_A_size) ;
if (C_to_A == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
// create the A->Y hyper_hash
GB_OK (GB_hyper_hash_build (A, Werk)) ;
const void *Ap = A->p ;
const void *A_Yp = (A->Y == NULL) ? NULL : A->Y->p ;
const void *A_Yi = (A->Y == NULL) ? NULL : A->Y->i ;
const void *A_Yx = (A->Y == NULL) ? NULL : A->Y->x ;
const int64_t A_hash_bits = (A->Y == NULL) ? 0 : (A->Y->vdim - 1) ;
// compute C_to_A
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < Cnvec ; k++)
{
int64_t pA, pA_end ;
int64_t j = GB_IGET (Ch, k) ;
int64_t kA = GB_hyper_hash_lookup (A->p_is_32, A->j_is_32,
Ah, Anvec, Ap, A_Yp, A_Yi, A_Yx, A_hash_bits, j, &pA, &pA_end) ;
C_to_A [k] = (pA < pA_end) ? kA : -1 ;
}
}
//--------------------------------------------------------------------------
// construct C_to_B mapping
//--------------------------------------------------------------------------
if (B_is_hyper && Ch != Bh)
{
// allocate C_to_B
ASSERT (Ch != NULL) ;
C_to_B = GB_MALLOC_MEMORY (Cnvec, sizeof (int64_t), &C_to_B_size) ;
if (C_to_B == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
// create the B->Y hyper_hash
GB_OK (GB_hyper_hash_build (B, Werk)) ;
const void *Bp = B->p ;
const void *B_Yp = (B->Y == NULL) ? NULL : B->Y->p ;
const void *B_Yi = (B->Y == NULL) ? NULL : B->Y->i ;
const void *B_Yx = (B->Y == NULL) ? NULL : B->Y->x ;
const int64_t B_hash_bits = (B->Y == NULL) ? 0 : (B->Y->vdim - 1) ;
// compute C_to_B
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < Cnvec ; k++)
{
int64_t pB, pB_end ;
int64_t j = GB_IGET (Ch, k) ;
int64_t kB = GB_hyper_hash_lookup (B->p_is_32, B->j_is_32,
Bh, Bnvec, Bp, B_Yp, B_Yi, B_Yx, B_hash_bits, j, &pB, &pB_end) ;
C_to_B [k] = (pB < pB_end) ? kB : -1 ;
}
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
(*p_Cnvec) = Cnvec ;
(*Ch_handle) = Ch ;
(*Ch_size_handle) = Ch_size ;
(*p_Cp_is_32) = Cp_is_32 ;
(*p_Cj_is_32) = Cj_is_32 ;
(*p_Ci_is_32) = Ci_is_32 ;
if (C_to_M_handle != NULL)
{
(*C_to_M_handle) = C_to_M ;
(*C_to_M_size_handle) = C_to_M_size ;
}
(*C_to_A_handle) = C_to_A ; (*C_to_A_size_handle) = C_to_A_size ;
(*C_to_B_handle) = C_to_B ; (*C_to_B_size_handle) = C_to_B_size ;
//--------------------------------------------------------------------------
// The code below describes what the output contains:
//--------------------------------------------------------------------------
#ifdef GB_DEBUG
ASSERT (A != NULL) ; // A and B are always present
ASSERT (B != NULL) ;
GB_IDECL (Ah, const, u) ; GB_IPTR (Ah, A->j_is_32) ;
GB_IDECL (Bh, const, u) ; GB_IPTR (Bh, B->j_is_32) ;
bool Mj_is_32 = (M == NULL) ? false : M->j_is_32 ;
GB_IDECL (Mh, const, u) ; GB_IPTR (Mh, Mj_is_32) ;
int64_t jlast = -1 ;
for (int64_t k = 0 ; k < Cnvec ; k++)
{
// C(:,j) is in the list, as the kth vector
int64_t j ;
if (Ch == NULL)
{
// C will be constructed as sparse
j = k ;
}
else
{
// C will be constructed as hypersparse
j = GB_IGET (Ch, k) ;
}
// vectors j in Ch are sorted, and in the range 0:n-1
ASSERT (j >= 0 && j < n) ;
ASSERT (j > jlast) ;
jlast = j ;
// see if A (:,j) exists
if (C_to_A != NULL)
{
// A is hypersparse
ASSERT (A_is_hyper)
int64_t kA = C_to_A [k] ;
ASSERT (kA >= -1 && kA < A->nvec) ;
if (kA >= 0)
{
int64_t jA = GB_IGET (Ah, kA) ; // OK: A is hyper
ASSERT (j == jA) ;
}
}
else if (A_is_hyper)
{
// A is hypersparse, and Ch is a shallow copy of A->h
ASSERT (Ch == Ah) ;
ASSERT (Cj_is_32 == A->j_is_32) ;
}
// see if B (:,j) exists
if (C_to_B != NULL)
{
// B is hypersparse
ASSERT (B_is_hyper)
int64_t kB = C_to_B [k] ;
ASSERT (kB >= -1 && kB < B->nvec) ;
if (kB >= 0)
{
int64_t jB = GB_IGET (Bh, kB) ; // OK: B is hyper
ASSERT (j == jB) ;
}
}
else if (B_is_hyper)
{
// A is hypersparse, and Ch is a shallow copy of A->h
ASSERT (Ch == Bh) ;
ASSERT (Cj_is_32 == B->j_is_32) ;
}
// see if M (:,j) exists
if (Ch != NULL && M != NULL && Ch == Mh)
{
// Ch is the same as Mh
ASSERT (C_to_M == NULL) ;
ASSERT (Cj_is_32 == M->j_is_32) ;
}
else if (C_to_M != NULL)
{
// M is present and hypersparse
ASSERT (M != NULL) ;
ASSERT (Mh != NULL) ;
ASSERT (M_is_hyper) ;
int64_t kM = C_to_M [k] ;
ASSERT (kM >= -1 && kM < M->nvec) ;
if (kM >= 0)
{
int64_t jM = GB_IGET (Mh, kM) ; // OK: M is hyper
ASSERT (j == jM) ;
}
}
else
{
// M is not present, or in sparse form
ASSERT (M == NULL || Mh == NULL) ;
}
}
#endif
return (GrB_SUCCESS) ;
}
|