File: GB_emult_08_phase2.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (310 lines) | stat: -rw-r--r-- 11,882 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//------------------------------------------------------------------------------
// GB_emult_08_phase2: C=A.*B, C<M>=A.*B, or C<!M>=A.*B
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// GB_emult_08_phase2 computes C=A.*B, C<M>=A.*B, or C<!M>=A.*B.  It is
// preceded first by GB_emult_08_phase0, which finds the list of vectors of
// C to compute (Ch, either NULL, or a shallow copy of A->h, B->h, or M->h) and
// their location in M, A, and B (C_to_[MAB]).  Next, GB_emult_08_phase1 counts
// the entries in each vector C(:,j) and computes Cp.

// GB_emult_08_phase2 computes the pattern and values of each vector of C(:,j),
// entirely in parallel.

// C is sparse or hypersparse; M, A, and B can be have any sparsity structure.
// If M is sparse or hypersparse, and complemented, however, then it is not
// applied and not passed to this function.  It is applied later, as determined
// by GB_emult_sparsity.

// This function either frees Cp or transplants it into C, as C->p.  Either
// way, the caller must not free it.

#include "ewise/GB_ewise.h"
#include "emult/GB_emult.h"
#include "binaryop/GB_binop.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_ew__include.h"
#endif

#define GB_FREE_ALL             \
{                               \
    GB_phybix_free (C) ;        \
}

GrB_Info GB_emult_08_phase2             // C=A.*B or C<M>=A.*B
(
    GrB_Matrix C,           // output matrix, static header
    const GrB_Type ctype,   // type of output matrix C
    const bool C_is_csc,    // format of output matrix C
    const GrB_BinaryOp op,  // op to perform C = op (A,B)
    const bool flipij,      // if true, i,j must be flipped
    // from phase1:
    void **Cp_handle,       // vector pointers for C
    size_t Cp_size,
    const int64_t Cnvec_nonempty,       // # of non-empty vectors in C
    // tasks from phase1a:
    const GB_task_struct *restrict TaskList, // array of structs
    const int C_ntasks,                         // # of tasks
    const int C_nthreads,                       // # of threads to use
    // analysis from phase0:
    const int64_t Cnvec,
    const void *Ch,
    size_t Ch_size,
    const int64_t *restrict C_to_M,
    const int64_t *restrict C_to_A,
    const int64_t *restrict C_to_B,
    const bool Cp_is_32,
    const bool Cj_is_32,
    const bool Ci_is_32,
    const int C_sparsity,
    // from GB_emult_sparsity:
    const int ewise_method,
    // original input:
    const GrB_Matrix M,             // optional mask, may be NULL
    const bool Mask_struct,         // if true, use the only structure of M
    const bool Mask_comp,           // if true, use !M
    const GrB_Matrix A,
    const GrB_Matrix B,
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;

    ASSERT_BINARYOP_OK (op, "op for emult phase2", GB0) ;
    ASSERT_MATRIX_OK (A, "A for emult 08 phase2", GB0) ;
    ASSERT (!GB_ZOMBIES (A)) ;
    ASSERT (!GB_JUMBLED (A)) ;
    ASSERT (!GB_PENDING (A)) ;

    ASSERT_MATRIX_OK (B, "B for emult 08 phase2", GB0) ;
    ASSERT (!GB_ZOMBIES (B)) ;
    ASSERT (!GB_JUMBLED (B)) ;
    ASSERT (!GB_PENDING (B)) ;

    ASSERT_MATRIX_OK_OR_NULL (M, "M for 08 emult phase2", GB0) ;
    ASSERT (!GB_ZOMBIES (M)) ;
    ASSERT (!GB_JUMBLED (M)) ;
    ASSERT (!GB_PENDING (M)) ;

    ASSERT (A->vdim == B->vdim) ;

    ASSERT (Cp_handle != NULL) ;

    GB_MDECL (Cp, , u) ;
    Cp = (*Cp_handle) ;
    GB_IPTR (Cp, Cp_is_32) ;

    //--------------------------------------------------------------------------
    // get the opcode
    //--------------------------------------------------------------------------

    bool C_is_hyper = (C_sparsity == GxB_HYPERSPARSE) ;
    ASSERT (C_is_hyper || (C_sparsity == GxB_SPARSE)) ;
    ASSERT (Cp != NULL) ;
    ASSERT (C_is_hyper == (Ch != NULL)) ;

    GB_Opcode opcode = op->opcode ;
    bool op_is_builtin_positional =
        GB_IS_BUILTIN_BINOP_CODE_POSITIONAL (opcode) ;
    bool op_is_index_binop = GB_IS_INDEXBINARYOP_CODE (opcode) ;
    bool op_is_positional = op_is_builtin_positional || op_is_index_binop ;
    bool op_is_first  = (opcode == GB_FIRST_binop_code) ;
    bool op_is_second = (opcode == GB_SECOND_binop_code) ;
    bool op_is_pair   = (opcode == GB_PAIR_binop_code) ;

    ASSERT (GB_Type_compatible (ctype, op->ztype)) ;
    ASSERT (GB_IMPLIES (!(op_is_second || op_is_pair
        || op_is_builtin_positional),
        GB_Type_compatible (A->type, op->xtype))) ;
    ASSERT (GB_IMPLIES (!(op_is_first || op_is_pair
        || op_is_builtin_positional),
        GB_Type_compatible (B->type, op->ytype))) ;

    //--------------------------------------------------------------------------
    // check if C is iso and compute its iso value if it is
    //--------------------------------------------------------------------------

    const size_t csize = ctype->size ;
    GB_void cscalar [GB_VLA(csize)] ;
    bool C_iso = GB_emult_iso (cscalar, ctype, A, B, op) ;

    //--------------------------------------------------------------------------
    // allocate the output matrix C
    //--------------------------------------------------------------------------

    int64_t cnz = GB_IGET (Cp, Cnvec) ;

    // allocate the result C (but do not allocate C->p or C->h)
    GrB_Info info = GB_new_bix (&C, // sparse/hyper, existing header
        ctype, A->vlen, A->vdim, GB_ph_null, C_is_csc,
        C_sparsity, true, A->hyper_switch, Cnvec, cnz, true, C_iso,
        Cp_is_32, Cj_is_32, Ci_is_32) ;
    if (info != GrB_SUCCESS)
    { 
        // out of memory; caller must free C_to_M, C_to_A, C_to_B
        // Ch must not be freed since Ch is always shallow
        GB_FREE_MEMORY (Cp_handle, Cp_size) ;
        return (info) ;
    }

    ASSERT (C->p_is_32 == Cp_is_32) ;
    ASSERT (C->j_is_32 == Cj_is_32) ;
    ASSERT (C->i_is_32 == Ci_is_32) ;

    // transplant Cp into C as the vector pointers, from GB_emult_08_phase1
//  C->nvec_nonempty = Cnvec_nonempty ;
    GB_nvec_nonempty_set (C, Cnvec_nonempty) ;
    C->p = Cp ; C->p_size = Cp_size ;
    C->nvals = cnz ;
    (*Cp_handle) = NULL ;

    // add Ch as the hypersparse list for C, from GB_emult_08_phase0
    if (C_is_hyper)
    { 
        // C->h is currently shallow; a copy is made at the end
        C->h = (void *) Ch ; C->h_size = Ch_size ;
        C->h_shallow = true ;
        C->nvec = Cnvec ;
    }

    // Cp has been transplanted into C; so it is not freed here
    ASSERT ((*Cp_handle) == NULL) ;
    C->magic = GB_MAGIC ;
    GB_Type_code ccode = ctype->code ;

    //--------------------------------------------------------------------------
    // check if the values of A and/or B are ignored
    //--------------------------------------------------------------------------

    // With C = ewisemult (A,B), only the intersection of A and B is used.
    // If op is SECOND or PAIR, the values of A are never accessed.
    // If op is FIRST  or PAIR, the values of B are never accessed.
    // If op is PAIR, the values of A and B are never accessed.
    // Contrast with ewiseadd.

    // A is passed as x, and B as y, in z = op(x,y)
    bool A_is_pattern = op_is_second || op_is_pair || op_is_positional ;
    bool B_is_pattern = op_is_first  || op_is_pair || op_is_positional ;

    //--------------------------------------------------------------------------
    // using a built-in binary operator (except for positional operators)
    //--------------------------------------------------------------------------

    info = GrB_NO_VALUE ;

    if (C_iso)
    { 

        //----------------------------------------------------------------------
        // via the iso kernel
        //----------------------------------------------------------------------

        // Cx [0] = cscalar = op (A,B)
        GB_BURBLE_MATRIX (C, "(iso emult) ") ;
        memcpy (C->x, cscalar, csize) ;

        // pattern of C = set intersection of pattern of A and B
        #define GB_ISO_EMULT
        #include "emult/template/GB_emult_08_template.c"
        info = GrB_SUCCESS ;

    }
    else
    {

        //----------------------------------------------------------------------
        // via the factory kernel
        //----------------------------------------------------------------------

        #ifndef GBCOMPACT
        GB_IF_FACTORY_KERNELS_ENABLED
        { 

            //------------------------------------------------------------------
            // define the worker for the switch factory
            //------------------------------------------------------------------

            #define GB_AemultB_08(mult,xname) GB (_AemultB_08_ ## mult ## xname)

            #define GB_BINOP_WORKER(mult,xname)                             \
            {                                                               \
                info = GB_AemultB_08(mult,xname) (C, M,                     \
                    Mask_struct, Mask_comp, A, B, C_to_M, C_to_A, C_to_B,   \
                    TaskList, C_ntasks, C_nthreads) ;                       \
            }                                                               \
            break ;

            //------------------------------------------------------------------
            // launch the switch factory
            //------------------------------------------------------------------

            GB_Type_code xcode, ycode, zcode ;
            if (!op_is_positional &&
                GB_binop_builtin (A->type, A_is_pattern, B->type, B_is_pattern,
                op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
            { 
                #define GB_NO_PAIR
                #include "binaryop/factory/GB_binop_factory.c"
            }
        }
        #endif
    }

    //--------------------------------------------------------------------------
    // via the JIT or PreJIT kernel
    //--------------------------------------------------------------------------

    if (info == GrB_NO_VALUE)
    { 
        info = GB_emult_08_jit (C, C_sparsity, M, Mask_struct, Mask_comp,
            op, flipij, A, B, C_to_M, C_to_A, C_to_B, TaskList, C_ntasks,
            C_nthreads) ;
    }

    //--------------------------------------------------------------------------
    // via the generic kernel
    //--------------------------------------------------------------------------

    if (info == GrB_NO_VALUE)
    { 
        GB_BURBLE_MATRIX (C, "(generic emult: %s) ", op->name) ;
        info = GB_emult_generic (C, op, flipij, TaskList, C_ntasks, C_nthreads,
            C_to_M, C_to_A, C_to_B, C_sparsity, ewise_method, NULL,
            NULL, 0, 0, NULL, 0, 0, NULL, 0, 0,
            M, Mask_struct, Mask_comp, A, B) ;
    }

    //--------------------------------------------------------------------------
    // remove empty vectors from C, if hypersparse
    //--------------------------------------------------------------------------

    if (info != GrB_SUCCESS)
    { 
        // out of memory, or other error
        GB_FREE_ALL ;
        return (info) ;
    }

    ASSERT_MATRIX_OK (C, "C before hyper prune for emult 08 phase2", GB0) ;
    GB_OK (GB_hyper_prune (C, Werk)) ;

    //--------------------------------------------------------------------------
    // return result
    //--------------------------------------------------------------------------

    ASSERT_MATRIX_OK (C, "C output for emult 08 phase2", GB0) ;
    return (GrB_SUCCESS) ;
}