1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
//------------------------------------------------------------------------------
// GB_emult_08_phase2: C=A.*B, C<M>=A.*B, or C<!M>=A.*B
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// GB_emult_08_phase2 computes C=A.*B, C<M>=A.*B, or C<!M>=A.*B. It is
// preceded first by GB_emult_08_phase0, which finds the list of vectors of
// C to compute (Ch, either NULL, or a shallow copy of A->h, B->h, or M->h) and
// their location in M, A, and B (C_to_[MAB]). Next, GB_emult_08_phase1 counts
// the entries in each vector C(:,j) and computes Cp.
// GB_emult_08_phase2 computes the pattern and values of each vector of C(:,j),
// entirely in parallel.
// C is sparse or hypersparse; M, A, and B can be have any sparsity structure.
// If M is sparse or hypersparse, and complemented, however, then it is not
// applied and not passed to this function. It is applied later, as determined
// by GB_emult_sparsity.
// This function either frees Cp or transplants it into C, as C->p. Either
// way, the caller must not free it.
#include "ewise/GB_ewise.h"
#include "emult/GB_emult.h"
#include "binaryop/GB_binop.h"
#include "jitifyer/GB_stringify.h"
#ifndef GBCOMPACT
#include "GB_control.h"
#include "FactoryKernels/GB_ew__include.h"
#endif
#define GB_FREE_ALL \
{ \
GB_phybix_free (C) ; \
}
GrB_Info GB_emult_08_phase2 // C=A.*B or C<M>=A.*B
(
GrB_Matrix C, // output matrix, static header
const GrB_Type ctype, // type of output matrix C
const bool C_is_csc, // format of output matrix C
const GrB_BinaryOp op, // op to perform C = op (A,B)
const bool flipij, // if true, i,j must be flipped
// from phase1:
void **Cp_handle, // vector pointers for C
size_t Cp_size,
const int64_t Cnvec_nonempty, // # of non-empty vectors in C
// tasks from phase1a:
const GB_task_struct *restrict TaskList, // array of structs
const int C_ntasks, // # of tasks
const int C_nthreads, // # of threads to use
// analysis from phase0:
const int64_t Cnvec,
const void *Ch,
size_t Ch_size,
const int64_t *restrict C_to_M,
const int64_t *restrict C_to_A,
const int64_t *restrict C_to_B,
const bool Cp_is_32,
const bool Cj_is_32,
const bool Ci_is_32,
const int C_sparsity,
// from GB_emult_sparsity:
const int ewise_method,
// original input:
const GrB_Matrix M, // optional mask, may be NULL
const bool Mask_struct, // if true, use the only structure of M
const bool Mask_comp, // if true, use !M
const GrB_Matrix A,
const GrB_Matrix B,
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;
ASSERT_BINARYOP_OK (op, "op for emult phase2", GB0) ;
ASSERT_MATRIX_OK (A, "A for emult 08 phase2", GB0) ;
ASSERT (!GB_ZOMBIES (A)) ;
ASSERT (!GB_JUMBLED (A)) ;
ASSERT (!GB_PENDING (A)) ;
ASSERT_MATRIX_OK (B, "B for emult 08 phase2", GB0) ;
ASSERT (!GB_ZOMBIES (B)) ;
ASSERT (!GB_JUMBLED (B)) ;
ASSERT (!GB_PENDING (B)) ;
ASSERT_MATRIX_OK_OR_NULL (M, "M for 08 emult phase2", GB0) ;
ASSERT (!GB_ZOMBIES (M)) ;
ASSERT (!GB_JUMBLED (M)) ;
ASSERT (!GB_PENDING (M)) ;
ASSERT (A->vdim == B->vdim) ;
ASSERT (Cp_handle != NULL) ;
GB_MDECL (Cp, , u) ;
Cp = (*Cp_handle) ;
GB_IPTR (Cp, Cp_is_32) ;
//--------------------------------------------------------------------------
// get the opcode
//--------------------------------------------------------------------------
bool C_is_hyper = (C_sparsity == GxB_HYPERSPARSE) ;
ASSERT (C_is_hyper || (C_sparsity == GxB_SPARSE)) ;
ASSERT (Cp != NULL) ;
ASSERT (C_is_hyper == (Ch != NULL)) ;
GB_Opcode opcode = op->opcode ;
bool op_is_builtin_positional =
GB_IS_BUILTIN_BINOP_CODE_POSITIONAL (opcode) ;
bool op_is_index_binop = GB_IS_INDEXBINARYOP_CODE (opcode) ;
bool op_is_positional = op_is_builtin_positional || op_is_index_binop ;
bool op_is_first = (opcode == GB_FIRST_binop_code) ;
bool op_is_second = (opcode == GB_SECOND_binop_code) ;
bool op_is_pair = (opcode == GB_PAIR_binop_code) ;
ASSERT (GB_Type_compatible (ctype, op->ztype)) ;
ASSERT (GB_IMPLIES (!(op_is_second || op_is_pair
|| op_is_builtin_positional),
GB_Type_compatible (A->type, op->xtype))) ;
ASSERT (GB_IMPLIES (!(op_is_first || op_is_pair
|| op_is_builtin_positional),
GB_Type_compatible (B->type, op->ytype))) ;
//--------------------------------------------------------------------------
// check if C is iso and compute its iso value if it is
//--------------------------------------------------------------------------
const size_t csize = ctype->size ;
GB_void cscalar [GB_VLA(csize)] ;
bool C_iso = GB_emult_iso (cscalar, ctype, A, B, op) ;
//--------------------------------------------------------------------------
// allocate the output matrix C
//--------------------------------------------------------------------------
int64_t cnz = GB_IGET (Cp, Cnvec) ;
// allocate the result C (but do not allocate C->p or C->h)
GrB_Info info = GB_new_bix (&C, // sparse/hyper, existing header
ctype, A->vlen, A->vdim, GB_ph_null, C_is_csc,
C_sparsity, true, A->hyper_switch, Cnvec, cnz, true, C_iso,
Cp_is_32, Cj_is_32, Ci_is_32) ;
if (info != GrB_SUCCESS)
{
// out of memory; caller must free C_to_M, C_to_A, C_to_B
// Ch must not be freed since Ch is always shallow
GB_FREE_MEMORY (Cp_handle, Cp_size) ;
return (info) ;
}
ASSERT (C->p_is_32 == Cp_is_32) ;
ASSERT (C->j_is_32 == Cj_is_32) ;
ASSERT (C->i_is_32 == Ci_is_32) ;
// transplant Cp into C as the vector pointers, from GB_emult_08_phase1
// C->nvec_nonempty = Cnvec_nonempty ;
GB_nvec_nonempty_set (C, Cnvec_nonempty) ;
C->p = Cp ; C->p_size = Cp_size ;
C->nvals = cnz ;
(*Cp_handle) = NULL ;
// add Ch as the hypersparse list for C, from GB_emult_08_phase0
if (C_is_hyper)
{
// C->h is currently shallow; a copy is made at the end
C->h = (void *) Ch ; C->h_size = Ch_size ;
C->h_shallow = true ;
C->nvec = Cnvec ;
}
// Cp has been transplanted into C; so it is not freed here
ASSERT ((*Cp_handle) == NULL) ;
C->magic = GB_MAGIC ;
GB_Type_code ccode = ctype->code ;
//--------------------------------------------------------------------------
// check if the values of A and/or B are ignored
//--------------------------------------------------------------------------
// With C = ewisemult (A,B), only the intersection of A and B is used.
// If op is SECOND or PAIR, the values of A are never accessed.
// If op is FIRST or PAIR, the values of B are never accessed.
// If op is PAIR, the values of A and B are never accessed.
// Contrast with ewiseadd.
// A is passed as x, and B as y, in z = op(x,y)
bool A_is_pattern = op_is_second || op_is_pair || op_is_positional ;
bool B_is_pattern = op_is_first || op_is_pair || op_is_positional ;
//--------------------------------------------------------------------------
// using a built-in binary operator (except for positional operators)
//--------------------------------------------------------------------------
info = GrB_NO_VALUE ;
if (C_iso)
{
//----------------------------------------------------------------------
// via the iso kernel
//----------------------------------------------------------------------
// Cx [0] = cscalar = op (A,B)
GB_BURBLE_MATRIX (C, "(iso emult) ") ;
memcpy (C->x, cscalar, csize) ;
// pattern of C = set intersection of pattern of A and B
#define GB_ISO_EMULT
#include "emult/template/GB_emult_08_template.c"
info = GrB_SUCCESS ;
}
else
{
//----------------------------------------------------------------------
// via the factory kernel
//----------------------------------------------------------------------
#ifndef GBCOMPACT
GB_IF_FACTORY_KERNELS_ENABLED
{
//------------------------------------------------------------------
// define the worker for the switch factory
//------------------------------------------------------------------
#define GB_AemultB_08(mult,xname) GB (_AemultB_08_ ## mult ## xname)
#define GB_BINOP_WORKER(mult,xname) \
{ \
info = GB_AemultB_08(mult,xname) (C, M, \
Mask_struct, Mask_comp, A, B, C_to_M, C_to_A, C_to_B, \
TaskList, C_ntasks, C_nthreads) ; \
} \
break ;
//------------------------------------------------------------------
// launch the switch factory
//------------------------------------------------------------------
GB_Type_code xcode, ycode, zcode ;
if (!op_is_positional &&
GB_binop_builtin (A->type, A_is_pattern, B->type, B_is_pattern,
op, false, &opcode, &xcode, &ycode, &zcode) && ccode == zcode)
{
#define GB_NO_PAIR
#include "binaryop/factory/GB_binop_factory.c"
}
}
#endif
}
//--------------------------------------------------------------------------
// via the JIT or PreJIT kernel
//--------------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
info = GB_emult_08_jit (C, C_sparsity, M, Mask_struct, Mask_comp,
op, flipij, A, B, C_to_M, C_to_A, C_to_B, TaskList, C_ntasks,
C_nthreads) ;
}
//--------------------------------------------------------------------------
// via the generic kernel
//--------------------------------------------------------------------------
if (info == GrB_NO_VALUE)
{
GB_BURBLE_MATRIX (C, "(generic emult: %s) ", op->name) ;
info = GB_emult_generic (C, op, flipij, TaskList, C_ntasks, C_nthreads,
C_to_M, C_to_A, C_to_B, C_sparsity, ewise_method, NULL,
NULL, 0, 0, NULL, 0, 0, NULL, 0, 0,
M, Mask_struct, Mask_comp, A, B) ;
}
//--------------------------------------------------------------------------
// remove empty vectors from C, if hypersparse
//--------------------------------------------------------------------------
if (info != GrB_SUCCESS)
{
// out of memory, or other error
GB_FREE_ALL ;
return (info) ;
}
ASSERT_MATRIX_OK (C, "C before hyper prune for emult 08 phase2", GB0) ;
GB_OK (GB_hyper_prune (C, Werk)) ;
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
ASSERT_MATRIX_OK (C, "C output for emult 08 phase2", GB0) ;
return (GrB_SUCCESS) ;
}
|