File: GB_subref.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (286 lines) | stat: -rw-r--r-- 12,236 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//------------------------------------------------------------------------------
// GB_subref: C = A(I,J)
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// C=A(I,J), either symbolic or numeric.  In a symbolic extraction, Cx [p] is
// not the value of A(i,j), but its position in Ai,Ax.  That is, pA = Cx [p]
// means that the entry at position p in C is the same as the entry in A at
// position pA.  In this case, Cx has a type of int64_t.

// Numeric extraction: C is iso if A is iso or C_iso is true on input

//      Sparse submatrix reference, C = A(I,J), extracting the values.  This is
//      an internal function called by GB_extract with symbolic==false, which
//      does the work of the user-callable GrB_*_extract methods.  It is also
//      called by GB_assign to extract the submask.  No pending tuples or
//      zombies appear in A.

// Symbolic extraction:  C is never iso

//      Sparse submatrix reference, C = A(I,J), extracting the pattern, not the
//      values.  For the symbolic case, this function is called only by
//      GB_subassign_symbolic.  Symbolic extraction creates a matrix C with the
//      same pattern (C->p and C->i) as numeric extraction, but with different
//      values, C->x.  For numeric extracion if C(inew,jnew) = A(i,j), the
//      value of A(i,j) is copied into C(i,j).  For symbolic extraction, its
//      *pointer* is copied into C(i,j).  Suppose an entry A(i,j) is held in
//      Ai [pa] and Ax [pa], and it appears in the output matrix C in Ci [pc]
//      and Cx [pc].  Then the two methods differ as follows:

//          this is the same:

//          i = Ai [pa] ;           // index i of entry A(i,j)
//          aij = Ax [pa] ;         // value of the entry A(i,j)
//          Ci [pc] = inew ;        // index inew of C(inew,jnew)

//          this is different:

//          Cx [pc] = aij ;         // for numeric extraction
//          Cx [pc] = pa ;          // for symbolic extraction

//      This function is called with symbolic==true by only by
//      GB_subassign_symbolic, which uses it to extract the pattern of C(I,J),
//      for the submatrix assignment C(I,J)=A.  In this case, this function
//      needs to deal with zombie entries.  GB_subassign_symbolic uses this
//      function on its C matrix, which is called A here because it is not
//      modified here.

//      Reading a zombie entry:  A zombie entry A(i,j) has been marked by
//      GB_ZOMBIE on its index.  The value of a zombie is not important, just
//      its presence in the pattern.  All zombies have been marked with
//      GB_ZOMBIE so that i < 0, and all regular entries are not marked as
//      zombies (i >= 0).  Zombies are entries that have been marked for
//      deletion but have not been removed from the matrix yet, since it's more
//      efficient to delete zombies all at once rather than one at a time.

//      The symbolic case is zombie-agnostic, in the sense that it does not
//      delete them.  It treats them like regular entries.  However, their
//      normal index must be used, not their GB_ZOMBIE'd indices.  The output
//      matrix C contains all non-zombie indices, and its references to zombies
//      and regular entries are identical.  Zombies in A are dealt with later.
//      They cannot be detected in the output C matrix, but they can be
//      detected in A.  Since pa = Cx [pc] holds the position of the entry in
//      A, the entry is a zombie if Ai [pa] has been marked with GB_ZOMBIE.

//      For symbolic extractionm, pending tuples can appear in the input matrix
//      A.  These are ignored.

#define GB_FREE_WORKSPACE                       \
{                                               \
    GB_FREE_MEMORY (&TaskList, TaskList_size) ;   \
    GB_FREE_MEMORY (&Ap_start, Ap_start_size) ;   \
    GB_FREE_MEMORY (&Ap_end, Ap_end_size) ;       \
    GB_FREE_MEMORY (&Ihead, Ihead_size) ;         \
    GB_FREE_MEMORY (&Inext, Inext_size) ;         \
    GB_FREE_MEMORY (&Cwork, Cwork_size) ;         \
}

#define GB_FREE_ALL             \
{                               \
    GB_FREE_MEMORY (&Cp, Cp_size) ;    \
    GB_FREE_MEMORY (&Ch, Ch_size) ;    \
    GB_phybix_free (C) ;        \
    GB_FREE_WORKSPACE ;         \
}

#include "extract/GB_subref.h"

GrB_Info GB_subref              // C = A(I,J): either symbolic or numeric
(
    // output
    GrB_Matrix C,               // output matrix, static header
    // input, not modified
    bool C_iso,                 // if true, return C as iso, regardless of A
    const bool C_is_csc,        // requested format of C
    const GrB_Matrix A,
    const void *I,              // index list for C = A(I,J), or GrB_ALL, etc.
    const bool I_is_32,         // if true, I is 32-bit; else 64-bit
    const int64_t ni,           // length of I, or special
    const void *J,              // index list for C = A(I,J), or GrB_ALL, etc.
    const bool J_is_32,         // if true, I is 32-bit; else 64-bit
    const int64_t nj,           // length of J, or special
    const bool symbolic,        // if true, construct C as symbolic
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;
    ASSERT_MATRIX_OK (A, "A for C=A(I,J) subref", GB0) ;
    ASSERT (GB_ZOMBIES_OK (A)) ;
    ASSERT (GB_JUMBLED_OK (A)) ;    // A is sorted, below, if jumbled on input
    ASSERT (GB_PENDING_OK (A)) ;

    //--------------------------------------------------------------------------
    // determine the type of C
    //--------------------------------------------------------------------------

    GrB_Type ctype ;
    if (symbolic)
    {
        // select the integer type for symbolic subref, based on nnz (A)
        int64_t anz = GB_nnz_held (A) ;
        ctype = (anz <= UINT32_MAX) ? GrB_UINT32 : GrB_UINT64 ;
    }
    else
    {
        // for all other cases, C is given the same type as A.
        ctype = A->type ;
    }

    //--------------------------------------------------------------------------
    // check if C is iso and get its iso value
    //--------------------------------------------------------------------------

    size_t csize = ctype->size ;
    GB_void cscalar [GB_VLA(csize)] ;
    memset (cscalar, 0, csize) ;
    if (symbolic)
    { 
        // symbolic extraction never results in an iso matrix
        C_iso = false ;
        ASSERT (GB_ZOMBIES_OK (A)) ;
    }
    else
    {
        // determine if C is iso and get the iso scalar
        if (A->iso)
        { 
            memcpy (cscalar, A->x, csize) ;
            C_iso = true ;
        }
        ASSERT (!GB_ZOMBIES (A)) ;
    }

    if (C_iso)
    { 
        GBURBLE ("(iso subref) ") ;
    }

    //--------------------------------------------------------------------------
    // handle bitmap and full cases
    //--------------------------------------------------------------------------

    if (GB_IS_BITMAP (A) || GB_IS_FULL (A))
    { 
        // C is constructed with same sparsity as A (bitmap or full)
        return (GB_bitmap_subref (C, ctype, C_iso, cscalar, C_is_csc, A,
            I, I_is_32, ni, J, J_is_32, nj, symbolic, Werk)) ;
    }

    //--------------------------------------------------------------------------
    // C = A(I,J) where C and A are both sparse or hypersparse
    //--------------------------------------------------------------------------

    void *Cp       = NULL ; size_t Cp_size = 0 ;
    void *Ch       = NULL ; size_t Ch_size = 0 ;
    void *Ap_start = NULL ; size_t Ap_start_size = 0 ;
    void *Ap_end   = NULL ; size_t Ap_end_size = 0 ;
    void *Ihead    = NULL ; size_t Ihead_size = 0 ;
    void *Inext    = NULL ; size_t Inext_size = 0 ;
    uint64_t *Cwork = NULL ; size_t Cwork_size = 0 ;
    GB_task_struct *TaskList = NULL ; size_t TaskList_size = 0 ;
    int64_t Cnvec = 0, nI = 0, nJ, Icolon [3], Cnvec_nonempty, ndupl ;
    bool post_sort, need_qsort, Cp_is_32, Cj_is_32, Ci_is_32, Ihead_is_32 ;
    int Ikind, ntasks, nthreads ;

    //--------------------------------------------------------------------------
    // ensure A is unjumbled
    //--------------------------------------------------------------------------

    // Ensure input matrix is not jumbled.  Zombies are OK.
    // Pending tuples are OK (and ignored) for symbolic extraction.
    // GB_subref_phase0 may build the hyper_hash.
    GB_UNJUMBLE (A) ;
    ASSERT (!GB_JUMBLED (A)) ;

    //--------------------------------------------------------------------------
    // phase0: find vectors for C=A(I,J), and I,J properties
    //--------------------------------------------------------------------------

    GB_OK (GB_subref_phase0 (
        // computed by phase0:
        &Ch, &Cj_is_32, &Ci_is_32, &Ch_size, &Ap_start, &Ap_start_size,
        &Ap_end, &Ap_end_size, &Cnvec, &need_qsort, &Ikind, &nI, Icolon, &nJ,
        // original input:
        A, I, I_is_32, ni, J, J_is_32, nj, Werk)) ;

    //--------------------------------------------------------------------------
    // phase1: split C=A(I,J) into tasks for phase2 and phase3
    //--------------------------------------------------------------------------

    // Cwork is allocated; it either becomes Cp, or it is freed by phase2
    // This phase also inverts I if needed.

    GB_OK (GB_subref_slice (
        // computed by phase1:
        &TaskList, &TaskList_size, &ntasks, &nthreads, &post_sort,
        &Ihead, &Ihead_size, &Inext, &Inext_size, &Ihead_is_32,
        &ndupl, &Cwork, &Cwork_size,
        // computed by phase0:
        Ap_start, Ap_end, Cnvec, need_qsort, Ikind, nI, Icolon,
        // original input:
        A->vlen, GB_nnz (A), A->p_is_32, I, I_is_32, Werk)) ;

    //--------------------------------------------------------------------------
    // phase2: count the number of entries in each vector of C
    //--------------------------------------------------------------------------

    GB_OK (GB_subref_phase2 (
        // computed by phase2:
        &Cp, &Cp_is_32, &Cp_size, &Cnvec_nonempty,
        // computed by phase1:
        TaskList, ntasks, nthreads, Ihead, Inext, Ihead_is_32,
        ndupl > 0, &Cwork, Cwork_size,
        // computed by phase0:
        Ap_start, Ap_end, Cnvec, need_qsort, Ikind, nI, Icolon, nJ,
        // original input:
        A, I, I_is_32, symbolic, Werk)) ;

    //--------------------------------------------------------------------------
    // phase3: compute the entries (indices and values) in each vector of C
    //--------------------------------------------------------------------------

    GB_OK (GB_subref_phase3 (
        // computed by phase3:
        C,
        // from phase2:
        &Cp, Cp_is_32, Cp_size, Cnvec_nonempty,
        // from phase1:
        TaskList, ntasks, nthreads, post_sort, Ihead, Inext, Ihead_is_32, ndupl,
        // from phase0:
        &Ch, Cj_is_32, Ci_is_32, Ch_size, Ap_start, Ap_end, Cnvec, need_qsort,
        Ikind, nI, Icolon, nJ,
        // from GB_subref, above:
        ctype, C_iso, cscalar,
        // original input:
        C_is_csc, A, I, I_is_32, symbolic, Werk)) ;

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    // Cp and Ch have been imported into C->p and C->h, or freed if phase3
    // fails.  Either way, Cp and Ch are set to NULL so that they cannot be
    // freed here (except by freeing C itself).

    // free workspace
    GB_FREE_WORKSPACE ;

    // C can be returned jumbled, even if A is not jumbled
    ASSERT_MATRIX_OK (C, "C output for C=A(I,J)", GB0) ;
    ASSERT (GB_ZOMBIES_OK (C)) ;
    ASSERT (GB_JUMBLED_OK (C)) ;
    ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
    return (GrB_SUCCESS) ;
}