1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
//------------------------------------------------------------------------------
// GB_subref_phase3: C=A(I,J) where C and A are sparse/hypersparse
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// This function either frees Cp and Ch, or transplants then into C, as C->p
// and C->h. Either way, the caller must not free them.
#include "extract/GB_subref.h"
#include "sort/GB_sort.h"
#include "jitifyer/GB_stringify.h"
GrB_Info GB_subref_phase3 // C=A(I,J)
(
GrB_Matrix C, // output matrix, static header
// from phase2:
void **Cp_handle, // vector pointers for C
const bool Cp_is_32, // if true, Cp is 32-bit; else 64-bit
size_t Cp_size,
const int64_t Cnvec_nonempty, // # of non-empty vectors in C
// from phase1:
const GB_task_struct *restrict TaskList, // array of structs
const int ntasks, // # of tasks
const int nthreads, // # of threads to use
const bool post_sort, // true if post-sort needed
const void *Ihead, // for I inverse buckets, size A->vlen
const void *Inext, // for I inverse buckets, size nI
const bool Ihead_is_32, // if true, Ihead,Inext 32-bit; else 64
const bool I_has_duplicates, // true if I has duplicates
// from phase0:
void **Ch_handle,
const bool Cj_is_32, // if true, C->h is 32-bit; else 64-bit
const bool Ci_is_32, // if true, C->i is 32-bit; else 64-bit
size_t Ch_size,
const void *Ap_start,
const void *Ap_end,
const int64_t Cnvec,
const bool need_qsort,
const int Ikind,
const int64_t nI,
const int64_t Icolon [3],
const int64_t nJ,
// from GB_subref:
const GrB_Type ctype, // type of C to create
const bool C_iso, // if true, C is iso
const GB_void *cscalar, // iso value of C
// original input:
const bool C_is_csc, // format of output matrix C
const GrB_Matrix A,
const void *I,
const bool I_is_32, // if true, I is 32-bit; else 64-bit
const bool symbolic,
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;
ASSERT (Cp_handle != NULL) ;
ASSERT (Ch_handle != NULL) ;
GB_MDECL (Cp, const, u) ;
Cp = (*Cp_handle) ;
GB_IPTR (Cp, Cp_is_32) ;
void *Ch = (*Ch_handle) ;
bool Ap_is_32 = A->p_is_32 ;
bool Ai_is_32 = A->i_is_32 ;
GB_IDECL (I , const, u) ; GB_IPTR (I , I_is_32) ;
GB_IDECL (Ap_start, const, u) ; GB_IPTR (Ap_start, Ap_is_32) ;
GB_IDECL (Ap_end , const, u) ; GB_IPTR (Ap_end , Ap_is_32) ;
GB_IDECL (Ihead , const, u) ; GB_IPTR (Ihead , Ihead_is_32) ;
GB_IDECL (Inext , const, u) ; GB_IPTR (Inext , Ihead_is_32) ;
ASSERT (Cp != NULL) ;
ASSERT_MATRIX_OK (A, "A for subref phase3", GB0) ;
ASSERT (!GB_IS_BITMAP (A)) ;
ASSERT (!GB_IS_FULL (A)) ;
ASSERT (GB_IS_SPARSE (A) || GB_IS_HYPERSPARSE (A)) ;
//--------------------------------------------------------------------------
// allocate the output matrix C
//--------------------------------------------------------------------------
int64_t cnz = GB_IGET (Cp, Cnvec) ;
bool C_is_hyper = (Ch != NULL) ;
// allocate the result C (but do not allocate C->p or C->h)
int sparsity = C_is_hyper ? GxB_HYPERSPARSE : GxB_SPARSE ;
GrB_Info info = GB_new_bix (&C, // sparse or hyper, existing header
ctype, nI, nJ, GB_ph_null, C_is_csc,
sparsity, true, A->hyper_switch, Cnvec, cnz, true, C_iso,
Cp_is_32, Cj_is_32, Ci_is_32) ;
if (info != GrB_SUCCESS)
{
// out of memory
GB_FREE_MEMORY (Cp_handle, Cp_size) ;
GB_FREE_MEMORY (Ch_handle, Ch_size) ;
return (info) ;
}
// add Cp as the vector pointers for C, from GB_subref_phase2
C->p = (*Cp_handle) ; C->p_size = Cp_size ;
(*Cp_handle) = NULL ;
// add Ch as the hypersparse list for C, from GB_subref_phase0
if (C_is_hyper)
{
// transplant Ch into C
C->h = Ch ; C->h_size = Ch_size ;
(*Ch_handle) = NULL ;
C->nvec = Cnvec ;
}
// now Cp and Ch have been transplanted into C, so they must not be freed.
ASSERT ((*Cp_handle) == NULL) ;
ASSERT ((*Ch_handle) == NULL) ;
// C->nvec_nonempty = Cnvec_nonempty ;
GB_nvec_nonempty_set (C, Cnvec_nonempty) ;
C->nvals = cnz ;
C->magic = GB_MAGIC ;
ASSERT (C->p_is_32 == Cp_is_32) ;
ASSERT (C->j_is_32 == Cj_is_32) ;
ASSERT (C->i_is_32 == Ci_is_32) ;
//--------------------------------------------------------------------------
// phase3: C = A(I,J)
//--------------------------------------------------------------------------
GB_Ci_DECLARE_U (Ci, ) ; GB_Ci_PTR (Ci, C) ;
#define GB_PHASE_2_OF_2
#define GB_I_KIND Ikind
#define GB_NEED_QSORT need_qsort
#define GB_I_HAS_DUPLICATES I_has_duplicates
if (symbolic)
{
//----------------------------------------------------------------------
// symbolic subref: Cx is uint32_t or uint64_t; the values of A ignored
//----------------------------------------------------------------------
ASSERT (!C_iso) ;
ASSERT (ctype == GrB_UINT32 || ctype == GrB_UINT64) ;
// symbolic subref must handle zombies
const bool may_see_zombies = (A->nzombies > 0) ;
if (ctype == GrB_UINT32)
{
uint32_t *restrict Cx = (uint32_t *) C->x ;
#define GB_COPY_RANGE(pC,pA,len) \
for (int64_t k = 0 ; k < (len) ; k++) \
{ \
Cx [(pC) + k] = (pA) + k ; \
}
#define GB_COPY_ENTRY(pC,pA) Cx [pC] = (pA) ;
#define GB_QSORT_1B(Ci,Cx,pC,clen) \
{ \
if (Ci_is_32) \
{ \
GB_qsort_1b_32_size4 (Ci32 + pC, Cx + pC, clen) ; \
} \
else \
{ \
GB_qsort_1b_64_size4 (Ci64 + pC, Cx + pC, clen) ; \
} \
}
#define GB_SYMBOLIC
#include "extract/template/GB_subref_template.c"
}
else
{
uint64_t *restrict Cx = (uint64_t *) C->x ;
#define GB_COPY_RANGE(pC,pA,len) \
for (int64_t k = 0 ; k < (len) ; k++) \
{ \
Cx [(pC) + k] = (pA) + k ; \
}
#define GB_COPY_ENTRY(pC,pA) Cx [pC] = (pA) ;
#define GB_QSORT_1B(Ci,Cx,pC,clen) \
{ \
if (Ci_is_32) \
{ \
GB_qsort_1b_32_size8 (Ci32 + pC, Cx + pC, clen) ; \
} \
else \
{ \
GB_qsort_1b_64_size8 (Ci64 + pC, Cx + pC, clen) ; \
} \
}
#define GB_SYMBOLIC
#include "extract/template/GB_subref_template.c"
}
}
else if (C_iso)
{
//----------------------------------------------------------------------
// iso numeric subref
//----------------------------------------------------------------------
// C is iso; no numeric values to extract; just set the iso value
memcpy (C->x, cscalar, A->type->size) ;
#define GB_COPY_RANGE(pC,pA,len) ;
#define GB_COPY_ENTRY(pC,pA) ;
#define GB_ISO_SUBREF
#define GB_QSORT_1B(Ci,Cx,pC,clen) \
{ \
if (Ci_is_32) \
{ \
GB_qsort_1_32 (Ci32 + pC, clen) ; \
} \
else \
{ \
GB_qsort_1_64 (Ci64 + pC, clen) ; \
} \
}
#include "extract/template/GB_subref_template.c"
}
else
{
//----------------------------------------------------------------------
// non-iso numeric subref
//----------------------------------------------------------------------
ASSERT (ctype == A->type) ;
// using the JIT kernel
info = GB_subref_sparse_jit (C, TaskList, ntasks, nthreads, post_sort,
Ihead, Inext, Ihead_is_32, I_has_duplicates, Ap_start, Ap_end,
need_qsort, Ikind, nI, Icolon, A, I, I_is_32) ;
if (info == GrB_NO_VALUE)
{
// using the generic kernel
GBURBLE ("(generic subref) ") ;
ASSERT (C->type = A->type) ;
const int64_t csize = C->type->size ;
const GB_void *restrict Ax = (GB_void *) A->x ;
GB_void *restrict Cx = (GB_void *) C->x ;
// C and A have the same type
#define GB_COPY_RANGE(pC,pA,len) \
memcpy (Cx + (pC)*csize, Ax + (pA)*csize, (len) * csize) ;
#define GB_COPY_ENTRY(pC,pA) \
memcpy (Cx + (pC)*csize, Ax + (pA)*csize, csize) ;
#define GB_QSORT_1B(Ci,Cx,pC,clen) \
{ \
if (Ci_is_32) \
{ \
GB_qsort_1b_32_generic (Ci32 + pC, \
(GB_void *) (Cx+(pC)*csize), csize, clen) ; \
} \
else \
{ \
GB_qsort_1b_64_generic (Ci64 + pC, \
(GB_void *) (Cx+(pC)*csize), csize, clen) ; \
} \
}
#include "extract/template/GB_subref_template.c"
info = GrB_SUCCESS ;
}
}
//--------------------------------------------------------------------------
// remove empty vectors from C, if hypersparse
//--------------------------------------------------------------------------
if (info == GrB_SUCCESS)
{
info = GB_hyper_prune (C, Werk) ;
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
if (info != GrB_SUCCESS)
{
// out of memory or JIT kernel failed
GB_phybix_free (C) ;
return (info) ;
}
// caller must not free Cp or Ch
ASSERT_MATRIX_OK (C, "C output for subref phase3", GB0) ;
return (GrB_SUCCESS) ;
}
|