1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
//------------------------------------------------------------------------------
// GB_subref_method.h: definitions of GB_subref_method and GB_subref_work
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#ifndef GB_SUBREF_METHOD_H
#define GB_SUBREF_METHOD_H
//------------------------------------------------------------------------------
// GB_subref_method: select a method for C(:,k) = A(I,j), for one vector of C
//------------------------------------------------------------------------------
// Determines the method used for to construct C(:,k) = A(I,j) for a
// single vector of C and A.
static inline int GB_subref_method // return the method to use (1 to 12)
(
// input:
const int64_t ajnz, // nnz (A (:,j))
const int64_t avlen, // A->vlen
const int Ikind, // GB_ALL, GB_RANGE, GB_STRIDE, or GB_LIST
const int64_t nI, // length of I
const bool I_inverse_ok, // true if I is invertable
const bool need_qsort, // true if C(:,k) requires sorting
const int64_t iinc, // increment for GB_STRIDE
const bool I_has_duplicates // true if duplicates in I
// (false if not yet known)
)
{
//--------------------------------------------------------------------------
// determine the method to use for C(:,k) = A (I,j)
//--------------------------------------------------------------------------
int method ;
if (ajnz == avlen)
{
// A(:,j) is dense
if (Ikind == GB_ALL)
{
// Case 1: C(:,k) = A(:,j) are both dense
method = 1 ;
}
else
{
// Case 2: C(:,k) = A(I,j), where A(:,j) is dense,
// for Ikind == GB_RANGE, GB_STRIDE, or GB_LIST
method = 2 ;
}
}
else if (nI == 1)
{
// Case 3: one index
method = 3 ;
}
else if (Ikind == GB_ALL)
{
// Case 4: I is ":"
method = 4 ;
}
else if (Ikind == GB_RANGE)
{
// Case 5: C (:,k) = A (ibegin:iend,j)
method = 5 ;
}
else if ((Ikind == GB_LIST && !I_inverse_ok) || // must do Case 6
(64 * nI < ajnz)) // Case 6 faster
{
// Case 6: nI not large; binary search of A(:,j) for each i in I
method = 6 ;
}
else if (Ikind == GB_STRIDE)
{
if (iinc >= 0)
{
// Case 7: I = ibegin:iinc:iend with iinc >= 0
method = 7 ;
}
else if (iinc < -1)
{
// Case 8: I = ibegin:iinc:iend with iinc < =1
method = 8 ;
}
else // iinc == -1
{
// Case 9: I = ibegin:(-1):iend
method = 9 ;
}
}
else // Ikind == GB_LIST, and I inverse buckets will be used
{
// construct the I inverse buckets
if (need_qsort)
{
// Case 10: nI large, need qsort
// duplicates are possible so cjnz > ajnz can hold. If fine tasks
// use this method, a post sort is needed when all tasks are done.
method = 10 ;
}
else if (I_has_duplicates)
{
// Case 11: nI large, no qsort, with duplicates
// duplicates are possible so cjnz > ajnz can hold. Note that the
// # of duplicates is only known after I is inverted, which might
// not yet be done. In that case, nuplicates is assumed to be
// zero, and Case 12 is assumed to be used instead. This is
// revised after I is inverted.
method = 11 ;
}
else
{
// Case 12: nI large, no qsort, no duplicates
method = 12 ;
}
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
return (method) ;
}
//------------------------------------------------------------------------------
// GB_subref_work: return the work for each subref method
//------------------------------------------------------------------------------
static inline int64_t GB_subref_work // return the work for a subref method
(
// output
bool *p_this_needs_I_inverse, // true if I needs to be inverted
// input:
const int64_t ajnz, // nnz (A (:,j))
const int64_t avlen, // A->vlen
const int Ikind, // GB_ALL, GB_RANGE, GB_STRIDE, or GB_LIST
const int64_t nI, // length of I
const bool I_inverse_ok, // true if I is invertable
const bool need_qsort, // true if C(:,k) requires sorting
const int64_t iinc // increment for GB_STRIDE
)
{
//--------------------------------------------------------------------------
// get the method
//--------------------------------------------------------------------------
// nduplicates in I not yet known; it is found when I is inverted. For
// now, assume I has no duplicate entries. All that is needed for now is
// the work required for each C(:,k), and whether or not I inverse must be
// created. The # of duplicates has no impact on the I inverse decision,
// and a minor effect on the work (which is ignored). Method 11 is only
// used if I_has_duplicates is true.
const bool I_has_duplicates = false ; // not yet known
int method = GB_subref_method (ajnz, avlen, Ikind, nI, I_inverse_ok,
need_qsort, iinc, I_has_duplicates) ;
//--------------------------------------------------------------------------
// get the work
//--------------------------------------------------------------------------
int64_t work = 0 ;
switch (method)
{
case 1 : work = nI ; break ;
case 2 : work = nI ; break ;
case 3 : work = 1 ; break ;
case 4 : work = ajnz ; break ;
case 5 : work = ajnz ; break ;
case 6 : work = nI * 64 ; break ;
case 7 : work = ajnz ; break ;
case 8 : work = ajnz ; break ;
case 9 : work = ajnz ; break ;
case 10 : work = ajnz * 32 ; break ;
// case 11 :
// work = ajnz * 2 ; break ; // case not determined yet
default :
case 12 : work = ajnz ; break ;
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
(*p_this_needs_I_inverse) = (method >= 10) ;
return (work) ;
}
#endif
|