File: GB_extractTuples.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (239 lines) | stat: -rw-r--r-- 8,787 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//------------------------------------------------------------------------------
// GB_extractTuples: extract all the tuples from a matrix
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

// Extracts all tuples from a matrix, like [I,J,X] = find (A).  If any
// parameter I, J and/or X is NULL, then that component is not extracted.  The
// size of the I, J, and X arrays (those that are not NULL) is given by nvals,
// which must be at least as large as GrB_nvals (&nvals, A).  The values in the
// matrix are typecasted to the type of X, as needed.

// This function does the work for the user-callable GrB_*_extractTuples
// functions, and helps build the tuples for GB_concat_hyper.

// If A is iso and X is not NULL, the iso scalar Ax [0] is expanded into X.

// FUTURE: pass in parameters I_offset and J_offset to add to I and J

#include "GB.h"
#include "extractTuples/GB_extractTuples.h"

#define GB_FREE_ALL                             \
{                                               \
    GB_FREE_MEMORY (&Cp, Cp_size) ;               \
}

GrB_Info GB_extractTuples       // extract all tuples from a matrix
(
    void *I_out,                // array for returning row indices of tuples
    bool I_is_32_out,           // if true, I is 32-bit; else 64 bit
    void *J_out,                // array for returning col indices of tuples
    bool J_is_32_out,           // if true, J is 32-bit; else 64 bit
    void *X,                    // array for returning values of tuples
    uint64_t *p_nvals,          // I,J,X size on input; # tuples on output
    const GrB_Type xtype,       // type of array X
    const GrB_Matrix A,         // matrix to extract tuples from
    GB_Werk Werk
)
{

    //--------------------------------------------------------------------------
    // check inputs
    //--------------------------------------------------------------------------

    GrB_Info info ;
    void *Cp = NULL ; size_t Cp_size = 0 ;
    ASSERT_MATRIX_OK (A, "A to extract", GB0) ;
    ASSERT_TYPE_OK (xtype, "xtype to extract", GB0) ;
    ASSERT (p_nvals != NULL) ;

    // delete any lingering zombies and assemble any pending tuples;
    // allow A to remain jumbled
    GB_MATRIX_WAIT_IF_PENDING_OR_ZOMBIES (A) ;

    // get the types
    GB_BURBLE_DENSE (A, "(A %s) ") ;
    const GB_Type_code xcode = xtype->code ;
    const GB_Type_code acode = A->type->code ;
    const size_t asize = A->type->size ;

    const int64_t anz = GB_nnz (A) ;
    if (anz == 0)
    { 
        // no work to do
        (*p_nvals) = 0 ;
        return (GrB_SUCCESS) ;
    }

    int64_t nvals = *p_nvals ;          // size of I,J,X on input
    if (nvals < anz && (I_out != NULL || J_out != NULL || X != NULL))
    { 
        // output arrays are not big enough
        return (GrB_INSUFFICIENT_SPACE) ;
    }

    //-------------------------------------------------------------------------
    // determine the number of threads to use
    //-------------------------------------------------------------------------

    int nthreads_max = GB_Context_nthreads_max ( ) ;
    double chunk = GB_Context_chunk ( ) ;
    int nthreads = GB_nthreads (anz + A->nvec, chunk, nthreads_max) ;

    //-------------------------------------------------------------------------
    // handle the CSR/CSC format
    //--------------------------------------------------------------------------

    void *I, *J ;
    bool I_is_32, J_is_32 ;
    if (A->is_csc)
    { 
        I = I_out ;
        J = J_out ;
        I_is_32 = I_is_32_out ;
        J_is_32 = J_is_32_out ;
    }
    else
    { 
        I = J_out ;
        J = I_out ;
        I_is_32 = J_is_32_out ;
        J_is_32 = I_is_32_out ;
    }

    //--------------------------------------------------------------------------
    // bitmap case
    //--------------------------------------------------------------------------

    if (GB_IS_BITMAP (A))
    {

        //----------------------------------------------------------------------
        // allocate workspace
        //----------------------------------------------------------------------

        bool Cp_is_32 = GB_determine_p_is_32 (true, anz) ;   // OK
        size_t cpsize = (Cp_is_32) ? sizeof (uint32_t) : sizeof (uint64_t) ;
        Cp = GB_MALLOC_MEMORY (A->vdim+1, cpsize, &Cp_size) ;
        if (Cp == NULL)
        { 
            // out of memory
            GB_FREE_ALL ;
            return (GrB_OUT_OF_MEMORY) ;
        }

        //----------------------------------------------------------------------
        // extract the tuples
        //----------------------------------------------------------------------

        // Extract the pattern and the values, typecasting if needed.  If A is
        // iso or X is NULL, GB_convert_b2s only does the symbolic work.

        // FUTURE: either extract the tuples directly from the bitmap, without
        // the need for Cp, or revise GB_convert_b2s to take in offsets
        // to add to I and J.

        GB_OK (GB_convert_b2s (Cp, I, J, (GB_void *) X, NULL,
            Cp_is_32, I_is_32, J_is_32, xtype, A, Werk)) ;

        if (A->iso && X != NULL)
        { 
            // A is iso but a non-iso X has been requested;
            // typecast the iso scalar and expand it into X
            const size_t xsize = xtype->size ;
            GB_void scalar [GB_VLA(xsize)] ;
            GB_cast_scalar (scalar, xcode, A->x, acode, asize) ;
            GB_OK (GB_iso_expand (X, anz, scalar, xtype)) ;
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // sparse, hypersparse, or full case
        //----------------------------------------------------------------------

        //----------------------------------------------------------------------
        // extract the row indices
        //----------------------------------------------------------------------

        if (I != NULL)
        {
            GB_IDECL (I, , u) ; GB_IPTR (I, I_is_32) ;
            if (A->i == NULL)
            {
                // A is full; construct the row indices
                int64_t avlen = A->vlen ;
                int64_t p ;
                #pragma omp parallel for num_threads(nthreads) schedule(static)
                for (p = 0 ; p < anz ; p++)
                { 
                    int64_t i = (p % avlen) ;
                    // I [p] = i ;
                    GB_ISET (I, p, i) ;
                }
            }
            else
            { 
                // A is sparse or hypersparse; copy/cast A->i into I
                GB_cast_int (
                    I,       I_is_32 ? GB_UINT32_code : GB_UINT64_code,
                    A->i, A->i_is_32 ? GB_UINT32_code : GB_UINT64_code,
                    anz, nthreads_max) ;
            }
        }

        //----------------------------------------------------------------------
        // extract the column indices
        //----------------------------------------------------------------------

        if (J != NULL)
        { 
            GB_OK (GB_extract_vector_list (J, J_is_32, A, Werk)) ;
        }

        //----------------------------------------------------------------------
        // extract the values
        //----------------------------------------------------------------------

        if (X != NULL)
        {
            if (A->iso)
            { 
                // A is iso but a non-iso X has been requested;
                // typecast the iso scalar and expand it into X
                const size_t xsize = xtype->size ;
                GB_void scalar [GB_VLA(xsize)] ;
                GB_cast_scalar (scalar, xcode, A->x, acode, asize) ;
                GB_OK (GB_iso_expand (X, anz, scalar, xtype)) ;
            }
            else if (xcode == acode)
            { 
                // copy the values from A into X, no typecast
                GB_memcpy (X, A->x, anz * asize, nthreads) ;
            }
            else
            { 
                // typecast the values from A into X
                ASSERT (X != NULL) ;
                ASSERT_MATRIX_OK (A, "A to cast_array", GB0) ;
                GB_OK (GB_cast_array ((GB_void *) X, xcode, A, nthreads)) ;
            }
        }
    }

    //--------------------------------------------------------------------------
    // free workspace and return result
    //--------------------------------------------------------------------------

    *p_nvals = anz ;            // number of tuples extracted
    GB_FREE_ALL ;
    return (GrB_SUCCESS) ;
}