1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
//------------------------------------------------------------------------------
// GB_extract_vector_list: extract vector indices for all entries in a matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// JIT: not needed; factory possible w/ 3 variants (sparse/hyper/full)
// Constructs a list of vector indices for each entry in a matrix. Creates
// the output J for GB_extractTuples, and I for GB_transpose when the qsort
// method is used. The integers of J do not have to match the integers of
// A->h, but they must be at least as large.
// FUTURE: pass in an offset to add to J
#include "extractTuples/GB_extractTuples.h"
#define GB_FREE_ALL \
{ \
GB_WERK_POP (A_ek_slicing, int64_t) ; \
}
GrB_Info GB_extract_vector_list // extract vector list from a matrix
(
// output:
void *J, // size nnz(A) or more
// input:
bool is_32, // if true, J is 32-bit; else 64-bit
const GrB_Matrix A,
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
ASSERT (J != NULL) ;
ASSERT (A != NULL) ;
ASSERT (GB_JUMBLED_OK (A)) ; // pattern not accessed
ASSERT (GB_ZOMBIES_OK (A)) ; // pattern not accessed
ASSERT (!GB_IS_BITMAP (A)) ;
//--------------------------------------------------------------------------
// get A and J
//--------------------------------------------------------------------------
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
const int64_t avlen = A->vlen ;
GB_IDECL (J, , u) ; GB_IPTR (J, is_32) ;
//--------------------------------------------------------------------------
// determine the max number of threads to use
//--------------------------------------------------------------------------
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
//--------------------------------------------------------------------------
// slice the entries for each task
//--------------------------------------------------------------------------
GB_WERK_DECLARE (A_ek_slicing, int64_t) ;
int A_ntasks, A_nthreads ;
GB_SLICE_MATRIX (A, 2) ;
//--------------------------------------------------------------------------
// extract the vector index for each entry
//--------------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(A_nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < A_ntasks ; tid++)
{
// if kfirst > klast then task tid does no work at all
int64_t kfirst = kfirst_Aslice [tid] ;
int64_t klast = klast_Aslice [tid] ;
for (int64_t k = kfirst ; k <= klast ; k++)
{
//------------------------------------------------------------------
// find the part of A(:,k) to be operated on by this task
//------------------------------------------------------------------
int64_t j = GBh_A (Ah, k) ;
GB_GET_PA (pA_start, pA_end, tid, k, kfirst, klast, pstart_Aslice,
GBp_A (Ap, k, avlen), GBp_A (Ap, k+1, avlen)) ;
//------------------------------------------------------------------
// extract vector indices of A(:,j)
//------------------------------------------------------------------
for (int64_t p = pA_start ; p < pA_end ; p++)
{
// J [p] = j ;
GB_ISET (J, p, j) ;
}
}
}
//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
|