1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
//------------------------------------------------------------------------------
// GB_hyper_hash_lookup_template: find k so that j == Ah [k], using hyper_hash
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Let j = Ah [k]
// k = A->Y (j, hash(j)), if present, or k=-1 if not found.
GB_STATIC_INLINE int64_t GB_hyper_hash_lookup_T // k if j==Ah[k]; -1 not found
(
// inputs, not modified:
const GB_JTYPE *restrict Ah, // A->h [0..A->nvec-1]: list of vectors
const int64_t anvec,
const GB_PTYPE *restrict Ap, // A->p [0..A->nvec]: pointers to vectors
const GB_JTYPE *restrict A_Yp, // A->Y->p
const GB_JTYPE *restrict A_Yi, // A->Y->i
const GB_JTYPE *restrict A_Yx, // A->Y->x
const uint64_t hash_bits, // A->Y->vdim-1, which is hash table size-1
const int64_t j, // find j in Ah [0..anvec-1], using A->Y
// outputs:
int64_t *restrict pstart, // start of vector: Ap [k]
int64_t *restrict pend // end of vector: Ap [k+1]
)
{
bool found = false ;
int64_t k ;
if (A_Yp == NULL)
{
//----------------------------------------------------------------------
// no hyper_hash constructed
//----------------------------------------------------------------------
// the hyper_hash is disabled. Quick lookup for j == Ah [j].
if (j < anvec && Ah [j] == j)
{
// found j == Ah [j], so return k = j
k = j ;
found = true ;
}
// binary search of Ah [0...A->nvec-1] for the value j
if (!found)
{
k = 0 ;
int64_t pright = anvec - 1 ;
found = GB_binary_search_T (j, Ah, &k, &pright) ;
}
}
else
{
//----------------------------------------------------------------------
// using the hyper_hash
//----------------------------------------------------------------------
// determine the hash bucket that would contain vector j
const int64_t jhash = GB_HASHF2 (j, hash_bits) ;
//----------------------------------------------------------------------
// search for j in jhash bucket: A_Yi [A_Yp [jhash] : A_Yp [jhash+1]-1]
//----------------------------------------------------------------------
const int64_t ypstart = A_Yp [jhash] ;
const int64_t ypend = A_Yp [jhash+1] ;
k = -1 ;
if ((ypend - ypstart) > 256)
{
// The hash bucket jhash has over 256 entries, which is a very high
// number of collisions. The load factor of the hash table ranges
// from 2 to 4. Do a binary search as a fallback.
int64_t p = ypstart ;
int64_t pright = ypend - 1 ;
found = GB_binary_search_T (j, A_Yi, &p, &pright) ;
if (found)
{
k = A_Yx [p] ;
}
}
else
{
// Linear-time search for j in the jhash bucket.
for (int64_t p = ypstart ; p < ypend ; p++)
{
if (j == A_Yi [p])
{
// found: j = Ah [k] where k is given by k = A_Yx [p]
k = A_Yx [p] ;
break ;
}
}
found = (k >= 0) ;
}
}
//--------------------------------------------------------------------------
// if found, return the start and end of A(:,j)
//--------------------------------------------------------------------------
if (found)
{
// found: j == Ah [k], get the vector A(:,j)
(*pstart) = Ap [k] ;
(*pend ) = Ap [k+1] ;
}
else
{
// not found: j is not in the hyperlist Ah [0..anvec-1]
k = -1 ;
(*pstart) = -1 ;
(*pend ) = -1 ;
}
return (k) ;
}
#undef GB_PTYPE
#undef GB_JTYPE
#undef GB_hyper_hash_lookup_T
#undef GB_binary_search_T
|