1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
//------------------------------------------------------------------------------
// GB_ijsort: sort an index array I and remove duplicates
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Sort an index array and remove duplicates:
/*
[I1 I1k] = sort (I) ;
Iduplicate = [(I1 (1:end-1) == I1 (2:end)), false] ;
I2 = I1 (~Iduplicate) ;
I2k = I1k (~Iduplicate) ;
*/
#include "ij/GB_ij.h"
#include "sort/GB_sort.h"
#define GB_FREE_WORKSPACE \
{ \
GB_FREE_MEMORY (&I1, I1_size) ; \
GB_FREE_MEMORY (&I1k, I1k_size) ; \
GB_WERK_POP (W, uint64_t) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_FREE_MEMORY (&I2, I2_size) ; \
GB_FREE_MEMORY (&I2k, I2k_size) ; \
}
GrB_Info GB_ijsort
(
// input:
const void *I, // size ni, where ni > 1 always holds
const bool I_is_32,
const int64_t ni, // length I
const int64_t imax, // maximum value in I
// output:
int64_t *p_ni2, // # of indices in I2 and I2k
void **p_I2, // size ni2, where I2 [0..ni2-1] contains the
// sorted indices with duplicates removed.
bool *I2_is_32_handle, // if I2_is_32 true, I2 is 32 bits; else 64 bits
size_t *I2_size_handle,
void **p_I2k, // output array of size ni2
bool *I2k_is_32_handle, // if I2k_is_32 true, I2 is 32 bits; else 64
size_t *I2k_size_handle,
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (I != NULL) ;
ASSERT (p_ni2 != NULL) ;
ASSERT (p_I2 != NULL) ;
ASSERT (p_I2k != NULL) ;
ASSERT (I2_is_32_handle != NULL) ;
ASSERT (I2_size_handle != NULL) ;
ASSERT (I2k_is_32_handle != NULL) ;
ASSERT (I2k_size_handle != NULL) ;
//--------------------------------------------------------------------------
// declare workspace and get inputs
//--------------------------------------------------------------------------
GB_MDECL (I2 , , u) ; size_t I2_size = 0 ;
GB_MDECL (I2k, , u) ; size_t I2k_size = 0 ;
GB_MDECL (I1 , , u) ; size_t I1_size = 0 ;
GB_MDECL (I1k, , u) ; size_t I1k_size = 0 ;
GB_WERK_DECLARE (W, uint64_t) ;
ASSERT (ni > 1) ;
int ntasks = 0 ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
int nthreads = GB_nthreads (ni, chunk, nthreads_max) ;
//--------------------------------------------------------------------------
// determine number of tasks to create
//--------------------------------------------------------------------------
ntasks = (nthreads == 1) ? 1 : (32 * nthreads) ;
ntasks = GB_IMIN (ntasks, ni) ;
ntasks = GB_IMAX (ntasks, 1) ;
//--------------------------------------------------------------------------
// allocate workspace
//--------------------------------------------------------------------------
GB_WERK_PUSH (W, ntasks+1, uint64_t) ;
bool I1_is_32 = (imax <= UINT32_MAX) ;
bool I1k_is_32 = (ni <= UINT32_MAX) ;
size_t i1size = (I1_is_32 ) ? sizeof (uint32_t) : sizeof (uint64_t) ;
size_t i1ksize = (I1k_is_32) ? sizeof (uint32_t) : sizeof (uint64_t) ;
I1 = GB_MALLOC_MEMORY (ni, i1size , &I1_size) ;
I1k = GB_MALLOC_MEMORY (ni, i1ksize, &I1k_size) ;
GB_IPTR (I1 , I1_is_32) ;
GB_IPTR (I1k, I1k_is_32) ;
if (W == NULL || I1 == NULL || I1k == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
//--------------------------------------------------------------------------
// copy I into I1 and construct I1k
//--------------------------------------------------------------------------
GB_Type_code i1code = (I1_is_32) ? GB_UINT32_code : GB_UINT64_code ;
GB_Type_code icode = (I_is_32 ) ? GB_UINT32_code : GB_UINT64_code ;
GB_cast_int (I1, i1code, I, icode, ni, nthreads_max) ;
int64_t k ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0 ; k < ni ; k++)
{
// the key nik is selected so that the last duplicate entry comes first
// in the sorted result. It must be adjusted later, so that the kth
// entry has a key equal to k.
int64_t nik = ni - k ;
GB_ISET (I1k, k, nik) ; // I1k [k] = nik ;
}
//--------------------------------------------------------------------------
// sort [I1 I1k]
//--------------------------------------------------------------------------
GB_OK (GB_msort_2 (I1, I1_is_32, I1k, I1k_is_32, ni, nthreads)) ;
//--------------------------------------------------------------------------
// count unique entries in I1
//--------------------------------------------------------------------------
int tid ;
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t kfirst, klast, my_count = 0 ;
GB_PARTITION (kfirst, klast, ni, tid, ntasks) ;
int64_t iprev = (kfirst == 0) ? (-1) : GB_IGET (I1, kfirst-1) ;
for (int64_t k = kfirst ; k < klast ; k++)
{
int64_t i = GB_IGET (I1, k) ;
if (iprev != i)
{
my_count++ ;
}
iprev = i ;
}
W [tid] = my_count ;
}
GB_cumsum1_64 (W, ntasks) ;
int64_t ni2 = W [ntasks] ;
//--------------------------------------------------------------------------
// allocate the result I2 and I2k
//--------------------------------------------------------------------------
const bool I2_is_32 = I1_is_32 ;
const bool I2k_is_32 = I1k_is_32 ;
I2 = GB_MALLOC_MEMORY (ni2, i1size , &I2_size) ;
I2k = GB_MALLOC_MEMORY (ni2, i1ksize, &I2k_size) ;
if (I2 == NULL || I2k == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_IPTR (I2, I2_is_32 ) ;
GB_IPTR (I2k, I2k_is_32) ;
//--------------------------------------------------------------------------
// construct the new list I2 from I1, removing duplicates
//--------------------------------------------------------------------------
#pragma omp parallel for num_threads(nthreads) schedule(dynamic,1)
for (tid = 0 ; tid < ntasks ; tid++)
{
int64_t kfirst, klast, k2 = W [tid] ;
GB_PARTITION (kfirst, klast, ni, tid, ntasks) ;
int64_t iprev = (kfirst == 0) ? (-1) : GB_IGET (I1, kfirst-1) ;
for (int64_t k = kfirst ; k < klast ; k++)
{
int64_t i = GB_IGET (I1, k) ;
if (iprev != i)
{
int64_t nik = ni - GB_IGET (I1k, k) ;
GB_ISET (I2, k2, i) ; // I2 [k2] = i
GB_ISET (I2k, k2, nik) ; // I2k [k2] = nik
k2++ ;
}
iprev = i ;
}
}
//--------------------------------------------------------------------------
// check result: compare with single-pass, single-threaded algorithm
//--------------------------------------------------------------------------
#ifdef GB_DEBUG
{
// compute the result sequentally in-place, in I1 and I1k, and compare
// with the output I2 and I2k.
int64_t ni1 = 1 ;
int64_t nik = ni - GB_IGET (I1k, 0) ; // nik = ni - I1k [0]
GB_ISET (I1k, 0, nik) ; // I1k [0] = nik
for (int64_t k = 1 ; k < ni ; k++)
{
if (GB_IGET (I1, ni1-1) != GB_IGET (I1, k))
{
int64_t i = GB_IGET (I1, k) ; // i = I1 [k]
GB_ISET (I1, ni1, i) ; // I1 [ni1] = i
int64_t nik = ni - GB_IGET (I1k, k) ; // nik = ni - I1k [k]
GB_ISET (I1k, ni1, nik) ; // I1k [ni1] = nik
ni1++ ;
}
}
ASSERT (ni1 == ni2) ;
for (int64_t k = 0 ; k < ni1 ; k++)
{
ASSERT (GB_IGET (I1 , k) == GB_IGET (I2 , k)) ;
ASSERT (GB_IGET (I1k, k) == GB_IGET (I2k, k)) ;
}
}
#endif
//--------------------------------------------------------------------------
// free workspace and return the new sorted lists
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
(*p_ni2) = ni2 ;
(*p_I2 ) = I2 ;
(*I2_size_handle ) = I2_size ;
(*I2_is_32_handle) = I2_is_32 ;
(*p_I2k) = I2k ;
(*I2k_size_handle) = I2k_size ;
(*I2k_is_32_handle) = I2k_is_32 ;
return (GrB_SUCCESS) ;
}
|