1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
//------------------------------------------------------------------------------
// GB_ijxvector: extract a list of indices or values from a GrB_Vector
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// The input vector List describes a list of integers or values to be used by
// GrB_assign, GxB_subassign, GrB_extract, or GrB_build, as I, J, or X.
//
// Descriptor settings: for I and J lists passed to GrB_assign,
// GxB_subassign and GrB_extract, and for I,J,X lists passed to GrB_build:
//
// default: use List->x as GxB_LIST of indices
// use indices: use List->i as GxB_LIST of indices
// stride: use List->x for Icolon [3] (signed integers);
// List->x must have exactly 3 entries (lo:inc:hi),
// and is typecast to Icolon of type int64_t.
// becomes GxB_STRIDE.
//
// If the List vector is NULL, it is treated as GrB_ALL; no need for the
// descriptor. Since the List vector can contain signed integers, there is no
// need for a RANGE or BACKWARDS descriptor.
//
// Descriptor fields that control the interpretation of the List:
//
// GxB_ROWINDEX_LIST how to interpret the GrB_Vector I
// GxB_COLINDEX_LIST how to interpret the GrB_Vector J
// GxB_VALUE_LIST how to interpret the GrB_Vector X for GrB_build
//
// values they can be set to:
//
// GrB_DEFAULT (0) use List->x
// GxB_USE_VALUES (0) use List->x (same as GrB_DEFAULT)
// GxB_USE_INDICES (7060) use List->i
// GxB_IS_STRIDE (7061) use List->x, size 3, for Icolon
//
// GrB_build does not allow GxB_IS_STRIDE for I, J, or X.
//
// GrB_extractTuples, with indices returned in GrB_Vectors I, J, and X will use
// none of these settings. It will always return its results in List->x. It
// does not use this method and ignores the descriptor settings above.
#include "GB_ij.h"
#include "container/GB_container.h"
#define GB_FREE_ALL \
{ \
GB_FREE_MEMORY (&I2, I2_size) ; \
if (I != NULL && I_size > 0) \
{ \
GB_FREE_MEMORY (&I, I_size) ; \
} \
GB_Matrix_free (&T) ; \
}
//------------------------------------------------------------------------------
// GB_stride: create a stride, I = begin:inc:end
//------------------------------------------------------------------------------
// GrB_assign, GxB_subassign, and GrB_extract all expect a list of unsigned
// integers for their list I. The stride can be negative, which is handled by
// setting ni to one of 3 special values:
//
// GxB_RANGE I = [begin, end, 1]
// GxB_BACKWARDS I = [begin, end, -stride]
// GxB_STRIDE I = [begin, end, +stride]
//
// Tyis method is not used for GrB_build.
static inline GrB_Info GB_stride
(
// input:
int64_t stride_begin,
int64_t stride_inc,
int64_t stride_end,
// output:
void **I_handle, // the list I; may be GrB_ALL
int64_t *ni_handle, // the length of I, or special (GxB_RANGE)
size_t *I_size_handle, // if > 0, I has been allocated by this
GrB_Type *I_type_handle // the type of I: always GrB_UINT64
)
{
ASSERT ((*I_handle) == NULL) ;
ASSERT ((*I_size_handle) == 0) ;
(*I_handle) = GB_CALLOC_MEMORY (3, sizeof (uint64_t), I_size_handle) ;
if ((*I_handle) == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
uint64_t *U64 = (uint64_t *) (*I_handle) ;
U64 [GxB_BEGIN] = (uint64_t) stride_begin ;
U64 [GxB_END ] = (uint64_t) stride_end ;
if (stride_inc == 1)
{
// in MATLAB notation: begin:1:end
U64 [GxB_INC] = 1 ;
(*ni_handle) = GxB_RANGE ;
}
else if (stride_inc < 0)
{
// in MATLAB notation: begin:stride:end, where stride < 0
U64 [GxB_INC] = (uint64_t) (-stride_inc) ;
(*ni_handle) = GxB_BACKWARDS ;
}
else
{
// in MATLAB notation: begin:stride:end, where stride > 1
U64 [GxB_INC] = (uint64_t) stride_inc ;
(*ni_handle) = GxB_STRIDE ;
}
(*I_type_handle) = GrB_UINT64 ;
return (GrB_SUCCESS) ;
}
//------------------------------------------------------------------------------
// GB_ijxvector: intrepret the List
//------------------------------------------------------------------------------
GrB_Info GB_ijxvector
(
// input:
GrB_Vector List, // defines the list, either from List->x or List-i.
// If List is NULL, it defines I = GrB_ALL.
bool need_copy, // if true, I must be allocated
int which, // 0: I list, 1: J list, 2: X list
const GrB_Descriptor desc, // row_list, col_list, val_list descriptors
bool is_build, // if true, method is GrB_build; otherwise, it is
// assign, subassign, or extract
// output:
void **I_handle, // the list I; may be GrB_ALL
int64_t *ni_handle, // the length of I, or special (GxB_RANGE)
size_t *I_size_handle, // if > 0, I has been allocated by this
// method. Otherwise, it is a shallow pointer into
// List->x or List->i, or is equal to GrB_ALL.
GrB_Type *I_type_handle, // the type of I: GrB_UINT32 or GrB_UINT64 for
// assign, subassign, extract, or for build when
// descriptor is GxB_USE_INDICES. For build,
// this is List->type when the descriptor is
// GxB_USE_VALUES.
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (I_handle != NULL) ;
ASSERT (ni_handle != NULL) ;
ASSERT (I_size_handle != NULL) ;
ASSERT (I_type_handle != NULL) ;
ASSERT_VECTOR_OK_OR_NULL (List, "List", GB0) ;
(*I_handle) = NULL ;
(*ni_handle) = 0 ;
(*I_size_handle) = 0 ;
(*I_type_handle) = NULL ;
struct GB_Matrix_opaque T_header ;
GrB_Matrix T = NULL ;
size_t I_size = 0, I2_size = 0 ;
void *I = NULL, *I2 = NULL ;
//--------------------------------------------------------------------------
// quick return if List is NULL
//--------------------------------------------------------------------------
if (List == NULL)
{
// GrB_build will not call this method with List == NULL
ASSERT (!is_build) ;
// List of NULL denotes GrB_ALL, or ":"; descriptor is ignored
(*I_handle) = (uint64_t *) GrB_ALL ;
(*I_type_handle) = GrB_UINT64 ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// finish any pending work in the List
//--------------------------------------------------------------------------
GB_MATRIX_WAIT (List) ;
//--------------------------------------------------------------------------
// get the descriptor
//--------------------------------------------------------------------------
// GrB_DEFAULT (0) use List->x
// GxB_USE_VALUES (0) use List->x (same as GrB_DEFAULT)
// GxB_USE_INDICES (7060) use List->i
// GxB_IS_STRIDE (7061) use List->x, size 3, for Icolon
int list_descriptor = GrB_DEFAULT ;
if (desc != NULL)
{
switch (which)
{
default:
case 0 : list_descriptor = desc->row_list ; break ;
case 1 : list_descriptor = desc->col_list ; break ;
case 2 : list_descriptor = desc->val_list ; break ;
}
}
bool list_is_stride = (list_descriptor == GxB_IS_STRIDE) ;
int64_t ni = GB_nnz ((GrB_Matrix) List) ;
if (list_is_stride && (ni != 3 || is_build))
{
// List must have exactly 3 items (lo,hi,stride) for GxB_IS_STRIDE
// for assign, subassign, and extract. GrB_build does not allow
// GxB_IS_STRIDE.
return (GrB_INVALID_VALUE) ;
}
bool use_values = (list_descriptor != GxB_USE_INDICES) ;
//--------------------------------------------------------------------------
// quick return if List is empty
//--------------------------------------------------------------------------
if (ni == 0)
{
// List is not NULL, but has no entries (nvals (List) == 0)
(*I_handle) = GB_CALLOC_MEMORY (1, sizeof (uint64_t), I_size_handle) ;
if ((*I_handle) == NULL)
{
return (GrB_OUT_OF_MEMORY) ;
}
(*I_type_handle) = GrB_UINT64 ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// extract the list of integers from the List vector
//--------------------------------------------------------------------------
int List_sparsity = GB_sparsity ((GrB_Matrix) List) ;
GrB_Type I_type = NULL ;
bool iso = false ;
if (List_sparsity == GxB_SPARSE)
{
//----------------------------------------------------------------------
// List is sparse
//----------------------------------------------------------------------
if (use_values)
{
I = List->x ;
I_type = List->type ;
iso = List->iso ;
}
else
{
I = List->i ;
I_type = (List->i_is_32) ? GrB_UINT32 : GrB_UINT64 ;
}
}
else if (List_sparsity == GxB_BITMAP)
{
//----------------------------------------------------------------------
// List is bitmap
//----------------------------------------------------------------------
uint64_t Cp [2] ;
if (use_values)
{
if (List->iso)
{
// get the iso value; it is expanded below
I = List->x ;
iso = true ;
}
else
{
// extract the values from the bitmap vector
I = GB_MALLOC_MEMORY (ni, List->type->size, &I_size) ;
if (I == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
GB_OK (GB_convert_b2s (Cp, NULL, NULL, /* Cx: */ I, NULL,
false, false, false, List->type, (GrB_Matrix) List, Werk)) ;
}
I_type = List->type ;
}
else
{
// extract the indices from the bitmap vector
I_type = (ni <= UINT32_MAX) ? GrB_UINT32 : GrB_UINT64 ;
I = GB_MALLOC_MEMORY (ni, I_type->size, &I_size) ;
if (I == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
GB_OK (GB_convert_b2s (Cp, /* Ci: */ I, NULL, NULL, NULL,
false, I_type == GrB_UINT32, false, List->type,
(GrB_Matrix) List, Werk)) ;
}
}
else // List_sparsity == GxB_FULL
{
//----------------------------------------------------------------------
// List is full
//----------------------------------------------------------------------
if (use_values)
{
// if the List is iso, it is expanded below
I = List->x ;
I_type = List->type ;
iso = List->iso ;
}
else
{
// create I = 0:1:(length(List)-1) with quick return
int64_t n = List->vlen ;
if (is_build)
{
// build an explicit list for GrB_build
I_type = (n <= UINT32_MAX) ? GrB_UINT32 : GrB_UINT64 ;
(*I_handle) = GB_MALLOC_MEMORY (n, I_type->size, I_size_handle);
if ((*I_handle) == NULL)
{
// out of memory
return (GrB_OUT_OF_MEMORY) ;
}
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
int nthreads = GB_nthreads (n, chunk, nthreads_max) ;
int64_t k ;
if (I_type == GrB_UINT32)
{
uint32_t *I = (uint32_t *) (*I_handle) ;
#pragma omp parallel for num_threads(nthreads) \
schedule(static)
for (k = 0 ; k < n ; k++)
{
I [k] = k ;
}
}
else
{
uint64_t *I = (uint64_t *) (*I_handle) ;
#pragma omp parallel for num_threads(nthreads) \
schedule(static)
for (k = 0 ; k < n ; k++)
{
I [k] = k ;
}
}
(*ni_handle) = n ;
(*I_type_handle) = I_type ;
return (GrB_SUCCESS) ;
}
else
{
// use I = [0, n-1, 1] and GxB_STRIDE
return (GB_stride (0, 1, n-1,
I_handle, ni_handle, I_size_handle, I_type_handle)) ;
}
}
}
//--------------------------------------------------------------------------
// expand I if it is iso-valued
//--------------------------------------------------------------------------
if (iso)
{
// I has not been allocted; it is a shallow copy of List->x
ASSERT (I == List->x) ;
ASSERT (I_size == 0) ;
I2 = GB_MALLOC_MEMORY (ni, I_type->size, &I2_size) ;
if (I2 == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
GB_OK (GB_iso_expand (I2, ni, I, I_type)) ;
// replace I with the newly-allocated and expanded I2
I = I2 ;
I_size = I2_size ;
I2 = NULL ;
I2_size = 0 ;
// the list I is no longer iso
iso = false ;
}
//--------------------------------------------------------------------------
// determine the final output type for I
//--------------------------------------------------------------------------
GrB_Type I_target_type = NULL ;
if (is_build && which == 2)
{
// List remains as-is for the values for build
I_target_type = I_type ;
}
else if (list_is_stride)
{
// ensure the List is typecast to int64_t
I_target_type = GrB_INT64 ;
}
else if (I_type == GrB_INT32 || I_type == GrB_UINT32)
{
// implicit typecast of int32_t to uint32_t (I does not change)
I_type = GrB_UINT32 ;
I_target_type = GrB_UINT32 ;
}
else if (I_type == GrB_INT64 || I_type == GrB_UINT64)
{
// implicit typecast of int64_t to uint64_t (I does not change)
I_type = GrB_UINT64 ;
I_target_type = GrB_UINT64 ;
}
else
{
// I_type is not a 32/64 bit integer; typecast it to GrB_UINT64
I_target_type = GrB_UINT64 ;
}
//--------------------------------------------------------------------------
// copy/typecast the indices if needed
//--------------------------------------------------------------------------
if ((need_copy && I_size == 0) || I_type != I_target_type)
{
// Create an ni-by-1 matrix T containing the values of I
GB_CLEAR_MATRIX_HEADER (T, &T_header) ;
GB_OK (GB_new (&T, // static header
I_type, ni, 1, GB_ph_null, true, GxB_FULL, 0, 0,
false, false, false)) ;
GB_vector_load ((GrB_Vector) T, &I, I_type, ni, I_size, true) ;
ASSERT_MATRIX_OK (T, "T for typecast to I", GB0) ;
// I2 = (uint64_t) T->x or (int64_t) T->x
I2 = GB_MALLOC_MEMORY (ni, sizeof (uint64_t), &I2_size) ;
if (I2 == NULL)
{
// out of memory
GB_FREE_ALL ;
return (GrB_OUT_OF_MEMORY) ;
}
int nthreads_max = GB_Context_nthreads_max ( ) ;
GB_OK (GB_cast_array (I2, I_target_type->code, T, nthreads_max)) ;
GB_Matrix_free (&T) ;
// free the old I and replace it with I2
if (I_size > 0)
{
GB_FREE_MEMORY (&I, I_size) ;
}
I = I2 ;
I_size = I2_size ;
I2 = NULL ;
I2_size = 0 ;
I_type = I_target_type ;
}
ASSERT (I_type == I_target_type) ;
ASSERT (GB_IMPLIES (need_copy, I_size > 0)) ;
//--------------------------------------------------------------------------
// create the stride or return the list I
//--------------------------------------------------------------------------
if (list_is_stride)
{
// I currently has type int64_t, so it can handle negative strides,
// but it must be converted to uint64_t to become Icolon.
ASSERT (I_type == GrB_INT64) ;
ASSERT (!is_build) ;
int64_t *I64 = (int64_t *) I ;
int64_t stride_begin = I64 [GxB_BEGIN] ;
int64_t stride_inc = I64 [GxB_INC ] ;
int64_t stride_end = I64 [GxB_END ] ;
// create the stride
GB_OK (GB_stride (stride_begin, stride_inc, stride_end,
I_handle, ni_handle, I_size_handle, I_type_handle)) ;
}
else
{
// return I as-is
ASSERT (I_type == GrB_UINT32 || I_type == GrB_UINT64 ||
(is_build && I_type == List->type)) ;
(*I_handle) = I ;
(*ni_handle) = ni ;
(*I_size_handle) = I_size ;
(*I_type_handle) = I_type ;
I = NULL ;
}
//--------------------------------------------------------------------------
// free workspace return result
//--------------------------------------------------------------------------
GB_FREE_ALL ;
return (GrB_SUCCESS) ;
}
|