1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
//------------------------------------------------------------------------------
// GB_enumify_assign: enumerate a GrB_assign problem
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// Enumify an assign/subassign operation: C(I,J)<M> += A. No transpose is
// handled; this is done first in GB_assign_prep.
// The user-callable methods, GrB_assign and GxB_subassign and their variants,
// call GB_assign and GB_subassign, respectively. Both of those call either
// GB_bitmap_assign or GB_subassigner to do the actual work, or related methods
// that do not need a JIT (GB_*assign_zombie, in particular).
// GB_bitmap_assign and GB_subassigner do not call the JIT directly. Instead,
// they call one of the many assign/subassign kernels, each of which has a JIT
// variant.
#include "GB.h"
#include "jitifyer/GB_stringify.h"
void GB_enumify_assign // enumerate a GrB_assign problem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// input:
// C matrix:
GrB_Matrix C,
bool C_replace,
// index types:
bool I_is_32, // if true, I is 32-bits; else 64
bool J_is_32, // if true, J is 32-bits; else 64
int Ikind, // 0: all (no I), 1: range, 2: stride, 3: list
int Jkind, // ditto
// M matrix:
GrB_Matrix M, // may be NULL
bool Mask_comp, // mask is complemented
bool Mask_struct, // mask is structural
// operator:
GrB_BinaryOp accum, // the accum operator (may be NULL)
// A matrix or scalar
GrB_Matrix A, // NULL for scalar assignment
GrB_Type scalar_type,
// S matrix:
GrB_Matrix S, // may be NULL, or of type GrB_UINT32 or GrB_UINT64
int assign_kind // 0: assign, 1: subassign, 2: row, 3: col
)
{
//--------------------------------------------------------------------------
// get the types of C, M, and A (or the scalar)
//--------------------------------------------------------------------------
GrB_Type ctype = C->type ;
GrB_Type mtype = (M == NULL) ? NULL : M->type ;
GrB_Type atype = (A == NULL) ? scalar_type : A->type ;
GrB_Type stype = (S == NULL) ? GrB_UINT64 : S->type ;
ASSERT (atype != NULL) ;
ASSERT (stype == GrB_UINT32 || stype == GrB_UINT64) ;
//--------------------------------------------------------------------------
// enumify the accum operator, if present, and get the types of x,y,z
//--------------------------------------------------------------------------
GB_Opcode accum_opcode ;
GB_Type_code xcode, ycode, zcode ;
int accum_code ;
if (accum == NULL)
{
// accum is not present
accum_opcode = GB_NOP_code ;
xcode = 0 ;
ycode = 0 ;
zcode = 0 ;
// accum_code is 63 if no accum is present
accum_code = 0x3F ;
}
else
{
accum_opcode = accum->opcode ;
xcode = accum->xtype->code ;
ycode = accum->ytype->code ;
zcode = accum->ztype->code ;
if (xcode == GB_BOOL_code) // && (ycode == GB_BOOL_code)
{
// rename the operator
accum_opcode = GB_boolean_rename (accum_opcode) ;
}
// accum_code is 0 to 52 if accum is present
accum_code = (accum_opcode - GB_USER_binop_code) & 0x3F ;
}
//--------------------------------------------------------------------------
// enumify the types
//--------------------------------------------------------------------------
int acode = atype->code ; // 1 to 14
int A_iso_code = (A != NULL && A->iso) ? 1 : 0 ;
int s_assign = (A == NULL) ? 1 : 0 ; // scalar assignment
// if (ccode == 0): C is iso and the kernel does not access its values
int ccode = (C->iso) ? 0 : ctype->code ; // 0 to 14
//--------------------------------------------------------------------------
// enumify the mask
//--------------------------------------------------------------------------
// mtype_code == 0: no mask present
int mtype_code = (mtype == NULL) ? 0 : mtype->code ; // 0 to 14
int mask_ecode ;
GB_enumify_mask (&mask_ecode, mtype_code, Mask_struct, Mask_comp) ;
//--------------------------------------------------------------------------
// enumify the sparsity structures of C, M, A, and B
//--------------------------------------------------------------------------
int C_sparsity = GB_sparsity (C) ;
int M_sparsity = (M == NULL) ? 0 : GB_sparsity (M) ;
int A_sparsity = (A == NULL) ? 0 : GB_sparsity (A) ;
int S_sparsity = (S == NULL) ? 0 : GB_sparsity (S) ;
int S_present = (S != NULL) ? 1 : 0 ;
int csparsity, msparsity, asparsity, ssparsity ;
GB_enumify_sparsity (&csparsity, C_sparsity) ;
GB_enumify_sparsity (&msparsity, M_sparsity) ;
GB_enumify_sparsity (&asparsity, A_sparsity) ;
GB_enumify_sparsity (&ssparsity, S_sparsity) ;
int C_repl = (C_replace) ? 1 : 0 ;
int i_is_32 = (I_is_32) ? 1 : 0 ;
int j_is_32 = (J_is_32) ? 1 : 0 ;
int cp_is_32 = (C->p_is_32) ? 1 : 0 ;
int cj_is_32 = (C->j_is_32) ? 1 : 0 ;
int ci_is_32 = (C->i_is_32) ? 1 : 0 ;
int mp_is_32 = (M != NULL && M->p_is_32) ? 1 : 0 ;
int mj_is_32 = (M != NULL && M->j_is_32) ? 1 : 0 ;
int mi_is_32 = (M != NULL && M->i_is_32) ? 1 : 0 ;
int ap_is_32 = (A != NULL && A->p_is_32) ? 1 : 0 ;
int aj_is_32 = (A != NULL && A->j_is_32) ? 1 : 0 ;
int ai_is_32 = (A != NULL && A->i_is_32) ? 1 : 0 ;
int sp_is_32 = (S != NULL && S->p_is_32) ? 1 : 0 ;
int sj_is_32 = (S != NULL && S->j_is_32) ? 1 : 0 ;
int si_is_32 = (S != NULL && S->i_is_32) ? 1 : 0 ;
int sx_is_32 = (stype == GrB_UINT32) ? 1 : 0 ;
//--------------------------------------------------------------------------
// construct the assign method_code
//--------------------------------------------------------------------------
// total method_code bits: 63 (16 hex digits): 1 bit to sparse
(*method_code) =
// range bits
// S, C, M, A, I, J integer types (4 hex digits)
GB_LSHIFT (sp_is_32 , 62) | // 0 to 1 1
GB_LSHIFT (sj_is_32 , 61) | // 0 to 1 1
GB_LSHIFT (si_is_32 , 60) | // 0 to 1 1
GB_LSHIFT (sx_is_32 , 59) | // 0 to 1 1
GB_LSHIFT (cp_is_32 , 58) | // 0 to 1 1
GB_LSHIFT (cj_is_32 , 57) | // 0 to 1 1
GB_LSHIFT (ci_is_32 , 56) | // 0 to 1 1
GB_LSHIFT (mp_is_32 , 55) | // 0 to 1 1
GB_LSHIFT (mj_is_32 , 54) | // 0 to 1 1
GB_LSHIFT (mi_is_32 , 53) | // 0 to 1 1
GB_LSHIFT (ap_is_32 , 52) | // 0 to 1 1
GB_LSHIFT (aj_is_32 , 51) | // 0 to 1 1
GB_LSHIFT (ai_is_32 , 50) | // 0 to 1 1
GB_LSHIFT (i_is_32 , 49) | // 0 to 1 1
GB_LSHIFT (j_is_32 , 48) | // 0 to 1 1
// C_replace, S present, scalar assign, A iso (1 hex digit)
GB_LSHIFT (C_repl , 47) | // 0 to 1 1
GB_LSHIFT (S_present , 46) | // 0 to 1 1
GB_LSHIFT (s_assign , 45) | // 0 to 1 1
GB_LSHIFT (A_iso_code , 44) | // 0 or 1 1
// Ikind, Jkind (1 hex digit)
GB_LSHIFT (Ikind , 42) | // 0 to 3 2
GB_LSHIFT (Jkind , 40) | // 0 to 3 2
// accum, z = f(x,y) (5 hex digits), and assign_kind
GB_LSHIFT (assign_kind, 38) | // 0 to 3 2
GB_LSHIFT (accum_code , 32) | // 0 to 63 6
GB_LSHIFT (zcode , 28) | // 0 to 14 4
GB_LSHIFT (xcode , 24) | // 0 to 14 4
GB_LSHIFT (ycode , 20) | // 0 to 14 4
// mask (one hex digit)
GB_LSHIFT (mask_ecode , 16) | // 0 to 13 4
// types of C and A (or scalar type) (2 hex digits)
GB_LSHIFT (ccode , 12) | // 0 to 14 4
GB_LSHIFT (acode , 8) | // 1 to 14 4
// sparsity structures of C, M, S, and A (2 hex digits),
GB_LSHIFT (csparsity , 6) | // 0 to 3 2
GB_LSHIFT (msparsity , 4) | // 0 to 3 2
GB_LSHIFT (ssparsity , 2) | // 0 to 3 2
GB_LSHIFT (asparsity , 0) ; // 0 to 3 2
}
|