1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
//------------------------------------------------------------------------------
// GB_macrofy_apply: construct all macros for apply methods
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB.h"
#include "jitifyer/GB_stringify.h"
void GB_macrofy_apply // construct all macros for GrB_apply
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
// operator:
const GB_Operator op, // unary/index-unary to apply; not binaryop
GrB_Type ctype,
GrB_Type atype
)
{
//--------------------------------------------------------------------------
// extract the apply method_code
//--------------------------------------------------------------------------
// C and A properties (3 hex digits)
bool Cp_is_32 = GB_RSHIFT (method_code, 44, 1) ;
bool Ci_is_32 = GB_RSHIFT (method_code, 43, 1) ;
bool Cj_is_32 = GB_RSHIFT (method_code, 42, 1) ;
bool Ap_is_32 = GB_RSHIFT (method_code, 41, 1) ;
bool Aj_is_32 = GB_RSHIFT (method_code, 40, 1) ;
bool Ai_is_32 = GB_RSHIFT (method_code, 39, 1) ;
int A_mat = GB_RSHIFT (method_code, 38, 1) ;
int A_zombies = GB_RSHIFT (method_code, 37, 1) ;
bool A_iso = GB_RSHIFT (method_code, 36, 1) ;
// C kind, i/j dependency and flipij (4 bits)
int C_mat = GB_RSHIFT (method_code, 35, 1) ;
int i_dep = GB_RSHIFT (method_code, 34, 1) ;
int j_dep = GB_RSHIFT (method_code, 33, 1) ;
bool flipij = GB_RSHIFT (method_code, 32, 1) ;
// op, z = f(x,i,j,y) (5 hex digits)
int unop_ecode = GB_RSHIFT (method_code, 24, 8) ;
// int zcode = GB_RSHIFT (method_code, 20, 4) ;
int xcode = GB_RSHIFT (method_code, 16, 4) ;
int ycode = GB_RSHIFT (method_code, 12, 4) ;
// types of C and A (2 hex digits)
// int ccode = GB_RSHIFT (method_code, 8, 4) ;
int acode = GB_RSHIFT (method_code, 4, 4) ;
// sparsity structures of C and A (1 hex digit)
int csparsity = GB_RSHIFT (method_code, 2, 2) ;
int asparsity = GB_RSHIFT (method_code, 0, 2) ;
//--------------------------------------------------------------------------
// describe the operator
//--------------------------------------------------------------------------
GrB_Type xtype, ytype, ztype ;
const char *xtype_name, *ytype_name, *ztype_name ;
xtype = (xcode == 0) ? NULL : op->xtype ;
ytype = (ycode == 0) ? NULL : op->ytype ;
ztype = op->ztype ;
xtype_name = (xtype == NULL) ? "void" : xtype->name ;
ytype_name = (ytype == NULL) ? "void" : ytype->name ;
ztype_name = ztype->name ;
if (op->hash == 0)
{
// builtin operator
fprintf (fp, "// op: (%s%s, %s)\n\n",
op->name, flipij ? " (flipped ij)" : "", xtype_name) ;
}
else
{
// user-defined operator
fprintf (fp,
"// op: %s%s, ztype: %s, xtype: %s, ytype: %s\n\n",
op->name, flipij ? " (flipped ij)" : "",
ztype_name, xtype_name, ytype_name) ;
}
//--------------------------------------------------------------------------
// construct the typedefs
//--------------------------------------------------------------------------
GB_macrofy_typedefs (fp, ctype, (acode == 0) ? NULL : atype, NULL,
xtype, ytype, ztype) ;
fprintf (fp, "// unary operator types:\n") ;
GB_macrofy_type (fp, "Z", "_", ztype_name) ;
GB_macrofy_type (fp, "X", "_", xtype_name) ;
GB_macrofy_type (fp, "Y", "_", ytype_name) ;
fprintf (fp, "#define GB_DECLAREZ(zwork) %s zwork\n", ztype_name) ;
fprintf (fp, "#define GB_DECLAREX(xwork) %s xwork\n", xtype_name) ;
fprintf (fp, "#define GB_DECLAREY(ywork) %s ywork\n", ytype_name) ;
//--------------------------------------------------------------------------
// construct macros for the unary operator
//--------------------------------------------------------------------------
fprintf (fp, "\n// unary operator%s:\n", flipij ? " (flipped ij)" : "") ;
GB_macrofy_unop (fp, "GB_UNARYOP", flipij, unop_ecode, op) ;
int y_dep = (ytype != NULL) ? 1 : 0 ;
fprintf (fp, "#define GB_DEPENDS_ON_X %d\n", (xtype != NULL) ? 1 : 0) ;
fprintf (fp, "#define GB_DEPENDS_ON_Y %d\n", y_dep) ;
fprintf (fp, "#define GB_DEPENDS_ON_I %d\n", i_dep) ;
fprintf (fp, "#define GB_DEPENDS_ON_J %d\n", j_dep) ;
bool no_typecast_of_A = (atype == xtype) || (xtype == NULL) ;
// Cx [pC] = op (Ax [pA], i, j, y)
char *pA = A_iso ? "0" : "pA" ;
char *i = i_dep ? "i" : " " ;
char *j = j_dep ? "j" : " " ;
char *y = y_dep ? "y" : " " ;
fprintf (fp, "#define GB_UNOP(Cx,pC,Ax,pA,A_iso,i,j,y)") ;
if (ctype == ztype && no_typecast_of_A)
{
// no typecasting
if (op->opcode == GB_IDENTITY_unop_code)
{
// identity operator, no typecasting
fprintf (fp, " Cx [pC] = Ax [%s]\n", pA) ;
}
else
{
// any operator, no typecsting
fprintf (fp, " GB_UNARYOP (Cx [pC], Ax [%s], %s, %s, %s)\n",
pA, i, j, y) ;
}
}
else if (ctype == ztype)
{
// aij = (xtype) Ax [pC] must be typecast, but not z
fprintf (fp, " \\\n"
"{ \\\n"
" GB_DECLAREA (aij) ; \\\n"
" GB_GETA (aij, Ax, %s, ) ; \\\n"
" GB_UNARYOP (Cx [pC], aij, %s, %s, %s) ; \\\n"
"}\n", pA, i, j, y) ;
}
else if (no_typecast_of_A)
{
// Cx [pC] = (ctype) z must be typecast, but not aij
fprintf (fp, " \\\n"
"{ \\\n"
" GB_DECLAREZ (z) ; \\\n"
" GB_UNARYOP (z, aij, Ax [%s], %s, %s, %s) ; \\\n"
" GB_PUTC (z, Cx, pC) ; \\\n"
"}\n", pA, i, j, y) ;
}
else
{
// both must be typecast
fprintf (fp, " \\\n"
"{ \\\n"
" GB_DECLAREA (aij) ; \\\n"
" GB_GETA (aij, Ax, %s, ) ; \\\n"
" GB_DECLAREZ (z) ; \\\n"
" GB_UNARYOP (z, aij, %s, %s, %s) ; \\\n"
" GB_PUTC (z, Cx, pC) ; \\\n"
"}\n", pA, i, j, y) ;
}
//--------------------------------------------------------------------------
// macros for the C array or matrix
//--------------------------------------------------------------------------
if (C_mat)
{
// C = op(A) where C is a matrix
GB_macrofy_output (fp, "c", "C", "C", ctype, ztype, csparsity, false,
false, Cp_is_32, Cj_is_32, Ci_is_32) ;
}
else
{
// Cx = op(A) where Cx is an array of type ztype
ASSERT (ctype == ztype) ;
fprintf (fp, "\n// C type:\n") ;
GB_macrofy_type (fp, "C", "_", ctype->name) ;
GB_macrofy_bits (fp, "C", Cp_is_32, Cj_is_32, Ci_is_32) ;
}
//--------------------------------------------------------------------------
// construct the macros for A array or matrix
//--------------------------------------------------------------------------
if (A_mat)
{
// C or Cx = op(A) for a matrix A
GB_macrofy_input (fp, "a", "A", "A", true, xtype,
atype, asparsity, acode, A_iso, A_zombies,
Ap_is_32, Aj_is_32, Ai_is_32) ;
}
else
{
// Cx = op(Ax) for arrays Cx and Ax (no typecast of A to xtype)
ASSERT (no_typecast_of_A) ;
fprintf (fp, "\n// A type:\n") ;
GB_macrofy_type (fp, "A", "_", atype->name) ;
}
//--------------------------------------------------------------------------
// include the final default definitions
//--------------------------------------------------------------------------
fprintf (fp, "\n#include \"include/GB_kernel_shared_definitions.h\"\n") ;
}
|