File: GB_macrofy_assign.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (502 lines) | stat: -rw-r--r-- 18,080 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
//------------------------------------------------------------------------------
// GB_macrofy_assign: construct all macros for assign methods
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#include "GB.h"
#include "jitifyer/GB_stringify.h"

void GB_macrofy_assign          // construct all macros for GrB_assign
(
    // output:
    FILE *fp,                   // target file to write, already open
    // input:
    uint64_t method_code,
    GrB_BinaryOp accum,         // accum operator to macrofy
    GrB_Type ctype,
    GrB_Type atype              // matrix or scalar type
)
{

    //--------------------------------------------------------------------------
    // extract the assign method_code
    //--------------------------------------------------------------------------

    // S, C, M, A, I, J integer types (4 hex digits)
    bool Sp_is_32   = GB_RSHIFT (method_code, 62, 1) ;
    bool Sj_is_32   = GB_RSHIFT (method_code, 61, 1) ;
    bool Si_is_32   = GB_RSHIFT (method_code, 60, 1) ;
    bool Sx_is_32   = GB_RSHIFT (method_code, 59, 1) ;

    bool Cp_is_32   = GB_RSHIFT (method_code, 58, 1) ;
    bool Cj_is_32   = GB_RSHIFT (method_code, 57, 1) ;
    bool Ci_is_32   = GB_RSHIFT (method_code, 56, 1) ;

    bool Mp_is_32   = GB_RSHIFT (method_code, 55, 1) ;
    bool Mj_is_32   = GB_RSHIFT (method_code, 54, 1) ;
    bool Mi_is_32   = GB_RSHIFT (method_code, 53, 1) ;

    bool Ap_is_32   = GB_RSHIFT (method_code, 52, 1) ;
    bool Aj_is_32   = GB_RSHIFT (method_code, 51, 1) ;
    bool Ai_is_32   = GB_RSHIFT (method_code, 50, 1) ;

    bool I_is_32    = GB_RSHIFT (method_code, 49, 1) ;
    bool J_is_32    = GB_RSHIFT (method_code, 48, 1) ;

    // C_replace, S present, scalar assign, A iso (1 hex digit)
    int C_replace   = GB_RSHIFT (method_code, 47, 1) ;
    int S_present   = GB_RSHIFT (method_code, 46, 1) ;
    bool s_assign   = GB_RSHIFT (method_code, 45, 1) ;
    bool A_iso      = GB_RSHIFT (method_code, 44, 1) ;

    // Ikind, Jkind (1 hex digit)
    int Ikind       = GB_RSHIFT (method_code, 42, 2) ;
    int Jkind       = GB_RSHIFT (method_code, 40, 2) ;

    // accum operator and assign_kind (5 hex digits)
    int assign_kind = GB_RSHIFT (method_code, 38, 2) ;
//  int accum_code  = GB_RSHIFT (method_code, 32, 6) ;
//  int zcode       = GB_RSHIFT (method_code, 28, 4) ;
    int xcode       = GB_RSHIFT (method_code, 24, 4) ;
//  int ycode       = GB_RSHIFT (method_code, 20, 4) ;

    // mask (one hex digit)
    int mask_ecode  = GB_RSHIFT (method_code, 16, 4) ;

    // types of C and A (or scalar type) (2 hex digits)
    int ccode       = GB_RSHIFT (method_code, 12, 4) ;   // if 0: C is iso
    int acode       = GB_RSHIFT (method_code,  8, 4) ;

    // sparsity structures of C, M, and A (2 hex digits),
    int csparsity   = GB_RSHIFT (method_code,  6, 2) ;
    int msparsity   = GB_RSHIFT (method_code,  4, 2) ;
    int ssparsity   = GB_RSHIFT (method_code,  2, 2) ;
    int asparsity   = GB_RSHIFT (method_code,  0, 2) ;

    //--------------------------------------------------------------------------
    // describe the assignment
    //--------------------------------------------------------------------------

    bool C_iso = (ccode == 0) ;

    #define SLEN 512
    char description [SLEN] ;
    bool Mask_comp = (mask_ecode % 2 == 1) ;
    bool Mask_struct = (mask_ecode <= 3) ;
    bool M_is_null = (mask_ecode == 0) ;
    int M_sparsity ;
    switch (msparsity)
    {
        default :
        case 0 : M_sparsity = GxB_HYPERSPARSE ; break ;
        case 1 : M_sparsity = GxB_SPARSE      ; break ;
        case 2 : M_sparsity = GxB_BITMAP      ; break ;
        case 3 : M_sparsity = GxB_FULL        ; break ;
    }

    switch (assign_kind)
    {
        case GB_ASSIGN     : fprintf (fp, "// assign: "     ) ; break ;
        case GB_SUBASSIGN  : fprintf (fp, "// subassign: "  ) ; break ;
        case GB_ROW_ASSIGN : fprintf (fp, "// row assign: " ) ; break ;
        case GB_COL_ASSIGN : fprintf (fp, "// col assign: " ) ; break ;
        default:;
    }
    GB_assign_describe (description, SLEN, C_replace, Ikind, Jkind,
        M_is_null, M_sparsity, Mask_comp, Mask_struct, accum, s_assign,
        assign_kind) ;
    fprintf (fp, "%s\n", description) ;

    fprintf (fp, "#define GB_ASSIGN_KIND ") ;
    switch (assign_kind)
    {
        case GB_ASSIGN     : fprintf (fp, "GB_ASSIGN\n"     ) ; break ;
        case GB_SUBASSIGN  : fprintf (fp, "GB_SUBASSIGN\n"  ) ; break ;
        case GB_ROW_ASSIGN : fprintf (fp, "GB_ROW_ASSIGN\n" ) ; break ;
        case GB_COL_ASSIGN : fprintf (fp, "GB_COL_ASSIGN\n" ) ; break ;
        default:;
    }

    fprintf (fp, "#define GB_SCALAR_ASSIGN %d\n", s_assign ? 1 : 0) ;

    fprintf (fp, "#define GB_I_KIND ") ;
    switch (Ikind)
    {
        case GB_ALL    : fprintf (fp, "GB_ALL\n"    ) ; break ;
        case GB_RANGE  : fprintf (fp, "GB_RANGE\n"  ) ; break ;
        case GB_STRIDE : fprintf (fp, "GB_STRIDE\n" ) ; break ;
        case GB_LIST   : fprintf (fp, "GB_LIST\n"   ) ; break ;
        default:;
    }

    fprintf (fp, "#define GB_J_KIND ") ;
    switch (Jkind)
    {
        case GB_ALL    : fprintf (fp, "GB_ALL\n"    ) ; break ;
        case GB_RANGE  : fprintf (fp, "GB_RANGE\n"  ) ; break ;
        case GB_STRIDE : fprintf (fp, "GB_STRIDE\n" ) ; break ;
        case GB_LIST   : fprintf (fp, "GB_LIST\n"   ) ; break ;
        default:;
    }

    fprintf (fp, "#define GB_I_TYPE uint%d_t\n", I_is_32 ? 32 : 64) ;
    fprintf (fp, "#define GB_J_TYPE uint%d_t\n", J_is_32 ? 32 : 64) ;
    fprintf (fp, "#define GB_I_IS_32 %d\n", I_is_32 ? 1 : 0) ;
    fprintf (fp, "#define GB_J_IS_32 %d\n", J_is_32 ? 1 : 0) ;

    fprintf (fp, "#define GB_C_REPLACE %d\n", C_replace) ;

    //--------------------------------------------------------------------------
    // describe the accum operator
    //--------------------------------------------------------------------------

    GrB_Type xtype, ytype, ztype ;
    const char *xtype_name, *ytype_name, *ztype_name ;

    fprintf (fp, "\n// accum: ") ;
    if (accum == NULL)
    { 
        // accum operator is not present
        xtype_name = "GB_void" ;
        ytype_name = "GB_void" ;
        ztype_name = "GB_void" ;
        xtype = NULL ;
        ytype = NULL ;
        ztype = NULL ;
        fprintf (fp, "not present\n\n") ;
    }
    else
    { 
        // accum operator is present
        xtype = accum->xtype ;
        ytype = accum->ytype ;
        ztype = accum->ztype ;
        xtype_name = xtype->name ;
        ytype_name = ytype->name ;
        ztype_name = ztype->name ;
        if (accum->hash == 0)
        { 
            // builtin operator
            fprintf (fp, "(%s, %s)\n\n", accum->name, xtype_name) ;
        }
        else
        { 
            // user-defined operator
            fprintf (fp,
                "%s, ztype: %s, xtype: %s, ytype: %s\n\n",
                accum->name, ztype_name, xtype_name, ytype_name) ;
        }
    }

    //--------------------------------------------------------------------------
    // construct the typedefs
    //--------------------------------------------------------------------------

    GB_macrofy_typedefs (fp, ctype, atype, NULL, xtype, ytype, ztype) ;

    if (accum != NULL)
    { 
        fprintf (fp, "// accum operator types:\n") ;
        GB_macrofy_type (fp, "Z", "_", ztype_name) ;
        GB_macrofy_type (fp, "X", "_", xtype_name) ;
        GB_macrofy_type (fp, "Y", "_", ytype_name) ;
        fprintf (fp, "#define GB_DECLAREZ(zwork) %s zwork\n", ztype_name) ;
        fprintf (fp, "#define GB_DECLAREX(xwork) %s xwork\n", xtype_name) ;
        fprintf (fp, "#define GB_DECLAREY(ywork) %s ywork\n", ytype_name) ;
    }

    //--------------------------------------------------------------------------
    // construct macros for the accum operator
    //--------------------------------------------------------------------------

    bool did_accum_scalar = false ;
    bool did_accum_aij = false ;
    bool need_copy_c_to_xwork = false ;

    if (accum != NULL)
    {
        fprintf (fp, "\n// accum operator:\n") ;

        GB_Opcode accum_opcode = accum->opcode ;
        if (xcode == GB_BOOL_code)  // && (ycode == GB_BOOL_code)
        { 
            // rename the operator
            accum_opcode = GB_boolean_rename (accum_opcode) ;
        }
        int accum_ecode ;
        GB_enumify_binop (&accum_ecode, accum_opcode, xcode, false, false) ;
        GB_macrofy_binop (fp, "GB_ACCUM_OP", false, false, true, false, false,
            accum_ecode, C_iso, accum, NULL, NULL, NULL) ;

        char *yname = "ywork" ;

        if (s_assign)
        {
            did_accum_scalar = true ;
            fprintf (fp, "#define GB_ACCUMULATE_scalar(Cx,pC,ywork,C_iso)") ;
            if (C_iso)
            { 
                fprintf (fp, "\n") ;
            }
            else
            { 
                fprintf (fp, " \\\n"
                    "{                                          \\\n") ;
            }
            // the scalar has already been typecasted into ywork
        }
        else
        {
            did_accum_aij = true ;
            fprintf (fp,
                "#define GB_ACCUMULATE_aij(Cx,pC,Ax,pA,A_iso,ywork,C_iso)") ;
            if (C_iso)
            { 
                fprintf (fp, "\n") ;
            }
            else
            { 
                fprintf (fp, " \\\n"
                    "{                                          \\\n") ;
                // if A is iso, its iso value is already typecasted into ywork
                if (!A_iso)
                {
                    if (atype == ytype)
                    { 
                        // use Ax [pA] directly instead of ywork
                        yname = "Ax [pA]" ;
                    }
                    else
                    { 
                        // ywork = (ytype) Ax [pA]
                        fprintf (fp,
                        "    GB_DECLAREY (ywork) ;                  \\\n"
                        "    GB_GETA (ywork, Ax, pA, ) ;            \\\n") ;
                    }
                }
            }
        }

        if (!C_iso)
        {
            char *xname ;
            if (xtype == ctype)
            { 
                // use Cx [pC] directly
                xname = "Cx [pC]" ;
            }
            else
            { 
                // xwork = (xtype) Cx [pC]
                need_copy_c_to_xwork = true ;
                xname = "xwork" ;
                fprintf (fp,
                    "    GB_DECLAREX (xwork) ;                  \\\n"
                    "    GB_COPY_C_to_xwork (xwork, Cx, pC) ;   \\\n") ;
            }
            if (ztype == ctype)
            {
                // write directly in Cx [pC], no need for zwork
                if (xtype == ctype)
                { 
                    // use the update method: Cx [pC] += y
                    fprintf (fp,
                    "    GB_UPDATE (Cx [pC], %s) ;          \\\n"
                    "}\n", yname) ;
                }
                else
                { 
                    // Cx [pC] = f (x,y)
                    fprintf (fp,
                    "    GB_ACCUM_OP (Cx [pC], %s, %s) ;          \\\n"
                    "}\n", xname, yname) ;
                }
            }
            else
            { 
                // zwork = f (x,y)
                // Cx [pC] = (ctype) zwork
                fprintf (fp,
                "    GB_DECLAREZ (zwork) ;                  \\\n"
                "    GB_ACCUM_OP (zwork, %s, %s) ;          \\\n"
                "    GB_PUTC (zwork, Cx, pC) ;              \\\n"
                "}\n", xname, yname) ;
            }
        }
    }

    if (!did_accum_scalar)
    { 
        fprintf (fp, "#define GB_ACCUMULATE_scalar(Cx,pC,ywork,C_iso)"
            " /* unused */\n") ;
    }

    if (!did_accum_aij)
    { 
        fprintf (fp, "#define GB_ACCUMULATE_aij(Cx,pC,Ax,pA,A_iso,ywork,C_iso)"
            " /* unused */\n") ;
    }

    //--------------------------------------------------------------------------
    // macros for the C matrix
    //--------------------------------------------------------------------------

    if (accum == NULL)
    { 
        // C(i,j) = (ctype) cwork, no typecasting
        GB_macrofy_output (fp, "cwork", "C", "C", ctype, ctype, csparsity,
            C_iso, C_iso, Cp_is_32, Cj_is_32, Ci_is_32) ;
    }
    else
    { 
        // C(i,j) = (ctype) zwork, with possible typecasting
        GB_macrofy_output (fp, "zwork", "C", "C", ctype, ztype, csparsity,
            C_iso, C_iso, Cp_is_32, Cj_is_32, Ci_is_32) ;
    }

    fprintf (fp, "#define GB_DECLAREC(cwork) %s cwork\n", ctype->name) ;

    if (s_assign)
    { 
        // cwork = (ctype) scalar
        GB_macrofy_cast_input (fp, "GB_COPY_scalar_to_cwork", "cwork",
            "scalar", "(*((GB_A_TYPE *) scalar))", ctype, atype) ;
        // C(i,j) = (ctype) scalar, already typecasted to cwork
        fprintf (fp, "#define GB_COPY_cwork_to_C(Cx,pC,cwork,C_iso)%s",
            C_iso ? "\n" : " Cx [pC] = cwork\n") ;
        // no copy of A(i,j) to cwork
        fprintf (fp, "#define GB_COPY_aij_to_cwork(cwork,Ax,pA,A_iso)"
            " /* unused */\n") ;
        // no copy of A(i,j) to C(i,j)
        fprintf (fp, "#define GB_COPY_aij_to_C(Cx,pC,Ax,pA,A_iso,cwork,C_iso)"
            " /* unused */\n") ;
    }
    else
    {
        // C(i,j) = (ctype) A(i,j)
        GB_macrofy_cast_copy (fp, "C", "A", (C_iso) ? NULL : ctype, atype,
            A_iso) ;
        fprintf (fp, "#define GB_COPY_aij_to_C(Cx,pC,Ax,pA,A_iso,cwork,C_iso)");
        if (C_iso)
        { 
            fprintf (fp, "\n");
        }
        else if (A_iso)
        { 
            // cwork = (ctype) Ax [0] already done
            fprintf (fp, " Cx [pC] = cwork\n") ;
        }
        else
        { 
            // general case
            fprintf (fp, " \\\n    GB_COPY_A_to_C (Cx, pC, Ax, pA, A_iso)\n") ;
        }
        // cwork = (ctype) A(i,j)
        GB_macrofy_cast_input (fp, "GB_COPY_aij_to_cwork", "cwork",
            "Ax,p,A_iso", A_iso ? "Ax [0]" : "Ax [p]", ctype, atype) ;
        // no copy of cwork to C
        fprintf (fp, "#define GB_COPY_cwork_to_C(Cx,pC,cwork,C_iso)"
            " /* unused */\n") ;
        // no copy of scalar to cwork
        fprintf (fp, "#define GB_COPY_scalar_to_cwork(cwork,scalar)"
            " /* unused */\n") ;
    }

    // xwork = (xtype) C(i,j), if needed
    if (need_copy_c_to_xwork)
    { 
        ASSERT (accum != NULL) ;
        ASSERT (!C_iso) ;
        ASSERT (xtype != ctype) ;
        GB_macrofy_cast_input (fp, "GB_COPY_C_to_xwork", "xwork",
            "Cx,p", "Cx [p]", xtype, ctype) ;
    }

    //--------------------------------------------------------------------------
    // construct the macros to access the mask (if any), and its name
    //--------------------------------------------------------------------------

    GB_macrofy_mask (fp, mask_ecode, "M", msparsity,
        Mp_is_32, Mj_is_32, Mi_is_32) ;

    //--------------------------------------------------------------------------
    // construct the macros for A or the scalar, including typecast to Y type
    //--------------------------------------------------------------------------

    bool did_scalar_to_ywork = false ;
    bool did_aij_to_ywork = false ;

    if (s_assign)
    { 
        // scalar assignment
        fprintf (fp, "\n// scalar:\n") ;
        GB_macrofy_type (fp, "A", "_", atype->name) ;
        if (accum != NULL)
        { 
            // accum is present
            // ywork = (ytype) scalar
            GB_macrofy_cast_input (fp, "GB_COPY_scalar_to_ywork", "ywork",
                "scalar", "(*((GB_A_TYPE *) scalar))", ytype, atype) ;
            did_scalar_to_ywork = true ;
        }
        GB_macrofy_sparsity (fp, "A", -1) ; // unused macros
        fprintf (fp, "#define GB_A_NVALS(e) int64_t e = 1 ; /* unused */\n") ;
        fprintf (fp, "#define GB_A_NHELD(e) int64_t e = 1 ; /* unused */\n") ;
        GB_macrofy_bits (fp, "A", false, false, false) ;
    }
    else
    {
        // matrix assignment
        GB_macrofy_input (fp, "a", "A", "A", true, ytype, atype, asparsity,
            acode, A_iso, -1, Ap_is_32, Aj_is_32, Ai_is_32) ;
        if (accum != NULL)
        { 
            // accum is present
            // ywork = (ytype) A(i,j)
            fprintf (fp, "#define GB_COPY_aij_to_ywork(ywork,Ax,pA,A_iso) "
                "GB_GETA (ywork, Ax, pA, A_iso)\n") ;
            did_aij_to_ywork = true ;
        }
    }

    if (!did_scalar_to_ywork)
    {
        fprintf (fp, "#define GB_COPY_scalar_to_ywork(ywork,scalar)"
            " /* unused */\n") ;
    }

    if (!did_aij_to_ywork)
    {
        fprintf (fp, "#define GB_COPY_aij_to_ywork(ywork,Ax,pA,A_iso)"
            " /* unused */\n") ;
    }

    //--------------------------------------------------------------------------
    // construct the macros for S
    //--------------------------------------------------------------------------

    if (S_present)
    {
        GB_macrofy_sparsity (fp, "S", ssparsity) ;
        fprintf (fp, "#define GB_S_CONSTRUCTED 1\n") ;
        GB_macrofy_bits (fp, "S", Sp_is_32, Sj_is_32, Si_is_32) ;
        fprintf (fp, "#define GB_Sx_BITS %d\n", Sx_is_32 ? 32 : 64) ;
        fprintf (fp, "#define GB_Sx_TYPE uint%d_t\n", Sx_is_32 ? 32 : 64) ;
    }
    else
    {
        fprintf (fp, "\n// S matrix: not constructed\n")  ;
        fprintf (fp, "#define GB_S_CONSTRUCTED 0\n") ;
    }

    //--------------------------------------------------------------------------
    // include the final default definitions
    //--------------------------------------------------------------------------

    fprintf (fp, "\n#include \"include/GB_assign_shared_definitions.h\"\n") ;
}