1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
//------------------------------------------------------------------------------
// GB_macrofy_assign: construct all macros for assign methods
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB.h"
#include "jitifyer/GB_stringify.h"
void GB_macrofy_assign // construct all macros for GrB_assign
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
GrB_BinaryOp accum, // accum operator to macrofy
GrB_Type ctype,
GrB_Type atype // matrix or scalar type
)
{
//--------------------------------------------------------------------------
// extract the assign method_code
//--------------------------------------------------------------------------
// S, C, M, A, I, J integer types (4 hex digits)
bool Sp_is_32 = GB_RSHIFT (method_code, 62, 1) ;
bool Sj_is_32 = GB_RSHIFT (method_code, 61, 1) ;
bool Si_is_32 = GB_RSHIFT (method_code, 60, 1) ;
bool Sx_is_32 = GB_RSHIFT (method_code, 59, 1) ;
bool Cp_is_32 = GB_RSHIFT (method_code, 58, 1) ;
bool Cj_is_32 = GB_RSHIFT (method_code, 57, 1) ;
bool Ci_is_32 = GB_RSHIFT (method_code, 56, 1) ;
bool Mp_is_32 = GB_RSHIFT (method_code, 55, 1) ;
bool Mj_is_32 = GB_RSHIFT (method_code, 54, 1) ;
bool Mi_is_32 = GB_RSHIFT (method_code, 53, 1) ;
bool Ap_is_32 = GB_RSHIFT (method_code, 52, 1) ;
bool Aj_is_32 = GB_RSHIFT (method_code, 51, 1) ;
bool Ai_is_32 = GB_RSHIFT (method_code, 50, 1) ;
bool I_is_32 = GB_RSHIFT (method_code, 49, 1) ;
bool J_is_32 = GB_RSHIFT (method_code, 48, 1) ;
// C_replace, S present, scalar assign, A iso (1 hex digit)
int C_replace = GB_RSHIFT (method_code, 47, 1) ;
int S_present = GB_RSHIFT (method_code, 46, 1) ;
bool s_assign = GB_RSHIFT (method_code, 45, 1) ;
bool A_iso = GB_RSHIFT (method_code, 44, 1) ;
// Ikind, Jkind (1 hex digit)
int Ikind = GB_RSHIFT (method_code, 42, 2) ;
int Jkind = GB_RSHIFT (method_code, 40, 2) ;
// accum operator and assign_kind (5 hex digits)
int assign_kind = GB_RSHIFT (method_code, 38, 2) ;
// int accum_code = GB_RSHIFT (method_code, 32, 6) ;
// int zcode = GB_RSHIFT (method_code, 28, 4) ;
int xcode = GB_RSHIFT (method_code, 24, 4) ;
// int ycode = GB_RSHIFT (method_code, 20, 4) ;
// mask (one hex digit)
int mask_ecode = GB_RSHIFT (method_code, 16, 4) ;
// types of C and A (or scalar type) (2 hex digits)
int ccode = GB_RSHIFT (method_code, 12, 4) ; // if 0: C is iso
int acode = GB_RSHIFT (method_code, 8, 4) ;
// sparsity structures of C, M, and A (2 hex digits),
int csparsity = GB_RSHIFT (method_code, 6, 2) ;
int msparsity = GB_RSHIFT (method_code, 4, 2) ;
int ssparsity = GB_RSHIFT (method_code, 2, 2) ;
int asparsity = GB_RSHIFT (method_code, 0, 2) ;
//--------------------------------------------------------------------------
// describe the assignment
//--------------------------------------------------------------------------
bool C_iso = (ccode == 0) ;
#define SLEN 512
char description [SLEN] ;
bool Mask_comp = (mask_ecode % 2 == 1) ;
bool Mask_struct = (mask_ecode <= 3) ;
bool M_is_null = (mask_ecode == 0) ;
int M_sparsity ;
switch (msparsity)
{
default :
case 0 : M_sparsity = GxB_HYPERSPARSE ; break ;
case 1 : M_sparsity = GxB_SPARSE ; break ;
case 2 : M_sparsity = GxB_BITMAP ; break ;
case 3 : M_sparsity = GxB_FULL ; break ;
}
switch (assign_kind)
{
case GB_ASSIGN : fprintf (fp, "// assign: " ) ; break ;
case GB_SUBASSIGN : fprintf (fp, "// subassign: " ) ; break ;
case GB_ROW_ASSIGN : fprintf (fp, "// row assign: " ) ; break ;
case GB_COL_ASSIGN : fprintf (fp, "// col assign: " ) ; break ;
default:;
}
GB_assign_describe (description, SLEN, C_replace, Ikind, Jkind,
M_is_null, M_sparsity, Mask_comp, Mask_struct, accum, s_assign,
assign_kind) ;
fprintf (fp, "%s\n", description) ;
fprintf (fp, "#define GB_ASSIGN_KIND ") ;
switch (assign_kind)
{
case GB_ASSIGN : fprintf (fp, "GB_ASSIGN\n" ) ; break ;
case GB_SUBASSIGN : fprintf (fp, "GB_SUBASSIGN\n" ) ; break ;
case GB_ROW_ASSIGN : fprintf (fp, "GB_ROW_ASSIGN\n" ) ; break ;
case GB_COL_ASSIGN : fprintf (fp, "GB_COL_ASSIGN\n" ) ; break ;
default:;
}
fprintf (fp, "#define GB_SCALAR_ASSIGN %d\n", s_assign ? 1 : 0) ;
fprintf (fp, "#define GB_I_KIND ") ;
switch (Ikind)
{
case GB_ALL : fprintf (fp, "GB_ALL\n" ) ; break ;
case GB_RANGE : fprintf (fp, "GB_RANGE\n" ) ; break ;
case GB_STRIDE : fprintf (fp, "GB_STRIDE\n" ) ; break ;
case GB_LIST : fprintf (fp, "GB_LIST\n" ) ; break ;
default:;
}
fprintf (fp, "#define GB_J_KIND ") ;
switch (Jkind)
{
case GB_ALL : fprintf (fp, "GB_ALL\n" ) ; break ;
case GB_RANGE : fprintf (fp, "GB_RANGE\n" ) ; break ;
case GB_STRIDE : fprintf (fp, "GB_STRIDE\n" ) ; break ;
case GB_LIST : fprintf (fp, "GB_LIST\n" ) ; break ;
default:;
}
fprintf (fp, "#define GB_I_TYPE uint%d_t\n", I_is_32 ? 32 : 64) ;
fprintf (fp, "#define GB_J_TYPE uint%d_t\n", J_is_32 ? 32 : 64) ;
fprintf (fp, "#define GB_I_IS_32 %d\n", I_is_32 ? 1 : 0) ;
fprintf (fp, "#define GB_J_IS_32 %d\n", J_is_32 ? 1 : 0) ;
fprintf (fp, "#define GB_C_REPLACE %d\n", C_replace) ;
//--------------------------------------------------------------------------
// describe the accum operator
//--------------------------------------------------------------------------
GrB_Type xtype, ytype, ztype ;
const char *xtype_name, *ytype_name, *ztype_name ;
fprintf (fp, "\n// accum: ") ;
if (accum == NULL)
{
// accum operator is not present
xtype_name = "GB_void" ;
ytype_name = "GB_void" ;
ztype_name = "GB_void" ;
xtype = NULL ;
ytype = NULL ;
ztype = NULL ;
fprintf (fp, "not present\n\n") ;
}
else
{
// accum operator is present
xtype = accum->xtype ;
ytype = accum->ytype ;
ztype = accum->ztype ;
xtype_name = xtype->name ;
ytype_name = ytype->name ;
ztype_name = ztype->name ;
if (accum->hash == 0)
{
// builtin operator
fprintf (fp, "(%s, %s)\n\n", accum->name, xtype_name) ;
}
else
{
// user-defined operator
fprintf (fp,
"%s, ztype: %s, xtype: %s, ytype: %s\n\n",
accum->name, ztype_name, xtype_name, ytype_name) ;
}
}
//--------------------------------------------------------------------------
// construct the typedefs
//--------------------------------------------------------------------------
GB_macrofy_typedefs (fp, ctype, atype, NULL, xtype, ytype, ztype) ;
if (accum != NULL)
{
fprintf (fp, "// accum operator types:\n") ;
GB_macrofy_type (fp, "Z", "_", ztype_name) ;
GB_macrofy_type (fp, "X", "_", xtype_name) ;
GB_macrofy_type (fp, "Y", "_", ytype_name) ;
fprintf (fp, "#define GB_DECLAREZ(zwork) %s zwork\n", ztype_name) ;
fprintf (fp, "#define GB_DECLAREX(xwork) %s xwork\n", xtype_name) ;
fprintf (fp, "#define GB_DECLAREY(ywork) %s ywork\n", ytype_name) ;
}
//--------------------------------------------------------------------------
// construct macros for the accum operator
//--------------------------------------------------------------------------
bool did_accum_scalar = false ;
bool did_accum_aij = false ;
bool need_copy_c_to_xwork = false ;
if (accum != NULL)
{
fprintf (fp, "\n// accum operator:\n") ;
GB_Opcode accum_opcode = accum->opcode ;
if (xcode == GB_BOOL_code) // && (ycode == GB_BOOL_code)
{
// rename the operator
accum_opcode = GB_boolean_rename (accum_opcode) ;
}
int accum_ecode ;
GB_enumify_binop (&accum_ecode, accum_opcode, xcode, false, false) ;
GB_macrofy_binop (fp, "GB_ACCUM_OP", false, false, true, false, false,
accum_ecode, C_iso, accum, NULL, NULL, NULL) ;
char *yname = "ywork" ;
if (s_assign)
{
did_accum_scalar = true ;
fprintf (fp, "#define GB_ACCUMULATE_scalar(Cx,pC,ywork,C_iso)") ;
if (C_iso)
{
fprintf (fp, "\n") ;
}
else
{
fprintf (fp, " \\\n"
"{ \\\n") ;
}
// the scalar has already been typecasted into ywork
}
else
{
did_accum_aij = true ;
fprintf (fp,
"#define GB_ACCUMULATE_aij(Cx,pC,Ax,pA,A_iso,ywork,C_iso)") ;
if (C_iso)
{
fprintf (fp, "\n") ;
}
else
{
fprintf (fp, " \\\n"
"{ \\\n") ;
// if A is iso, its iso value is already typecasted into ywork
if (!A_iso)
{
if (atype == ytype)
{
// use Ax [pA] directly instead of ywork
yname = "Ax [pA]" ;
}
else
{
// ywork = (ytype) Ax [pA]
fprintf (fp,
" GB_DECLAREY (ywork) ; \\\n"
" GB_GETA (ywork, Ax, pA, ) ; \\\n") ;
}
}
}
}
if (!C_iso)
{
char *xname ;
if (xtype == ctype)
{
// use Cx [pC] directly
xname = "Cx [pC]" ;
}
else
{
// xwork = (xtype) Cx [pC]
need_copy_c_to_xwork = true ;
xname = "xwork" ;
fprintf (fp,
" GB_DECLAREX (xwork) ; \\\n"
" GB_COPY_C_to_xwork (xwork, Cx, pC) ; \\\n") ;
}
if (ztype == ctype)
{
// write directly in Cx [pC], no need for zwork
if (xtype == ctype)
{
// use the update method: Cx [pC] += y
fprintf (fp,
" GB_UPDATE (Cx [pC], %s) ; \\\n"
"}\n", yname) ;
}
else
{
// Cx [pC] = f (x,y)
fprintf (fp,
" GB_ACCUM_OP (Cx [pC], %s, %s) ; \\\n"
"}\n", xname, yname) ;
}
}
else
{
// zwork = f (x,y)
// Cx [pC] = (ctype) zwork
fprintf (fp,
" GB_DECLAREZ (zwork) ; \\\n"
" GB_ACCUM_OP (zwork, %s, %s) ; \\\n"
" GB_PUTC (zwork, Cx, pC) ; \\\n"
"}\n", xname, yname) ;
}
}
}
if (!did_accum_scalar)
{
fprintf (fp, "#define GB_ACCUMULATE_scalar(Cx,pC,ywork,C_iso)"
" /* unused */\n") ;
}
if (!did_accum_aij)
{
fprintf (fp, "#define GB_ACCUMULATE_aij(Cx,pC,Ax,pA,A_iso,ywork,C_iso)"
" /* unused */\n") ;
}
//--------------------------------------------------------------------------
// macros for the C matrix
//--------------------------------------------------------------------------
if (accum == NULL)
{
// C(i,j) = (ctype) cwork, no typecasting
GB_macrofy_output (fp, "cwork", "C", "C", ctype, ctype, csparsity,
C_iso, C_iso, Cp_is_32, Cj_is_32, Ci_is_32) ;
}
else
{
// C(i,j) = (ctype) zwork, with possible typecasting
GB_macrofy_output (fp, "zwork", "C", "C", ctype, ztype, csparsity,
C_iso, C_iso, Cp_is_32, Cj_is_32, Ci_is_32) ;
}
fprintf (fp, "#define GB_DECLAREC(cwork) %s cwork\n", ctype->name) ;
if (s_assign)
{
// cwork = (ctype) scalar
GB_macrofy_cast_input (fp, "GB_COPY_scalar_to_cwork", "cwork",
"scalar", "(*((GB_A_TYPE *) scalar))", ctype, atype) ;
// C(i,j) = (ctype) scalar, already typecasted to cwork
fprintf (fp, "#define GB_COPY_cwork_to_C(Cx,pC,cwork,C_iso)%s",
C_iso ? "\n" : " Cx [pC] = cwork\n") ;
// no copy of A(i,j) to cwork
fprintf (fp, "#define GB_COPY_aij_to_cwork(cwork,Ax,pA,A_iso)"
" /* unused */\n") ;
// no copy of A(i,j) to C(i,j)
fprintf (fp, "#define GB_COPY_aij_to_C(Cx,pC,Ax,pA,A_iso,cwork,C_iso)"
" /* unused */\n") ;
}
else
{
// C(i,j) = (ctype) A(i,j)
GB_macrofy_cast_copy (fp, "C", "A", (C_iso) ? NULL : ctype, atype,
A_iso) ;
fprintf (fp, "#define GB_COPY_aij_to_C(Cx,pC,Ax,pA,A_iso,cwork,C_iso)");
if (C_iso)
{
fprintf (fp, "\n");
}
else if (A_iso)
{
// cwork = (ctype) Ax [0] already done
fprintf (fp, " Cx [pC] = cwork\n") ;
}
else
{
// general case
fprintf (fp, " \\\n GB_COPY_A_to_C (Cx, pC, Ax, pA, A_iso)\n") ;
}
// cwork = (ctype) A(i,j)
GB_macrofy_cast_input (fp, "GB_COPY_aij_to_cwork", "cwork",
"Ax,p,A_iso", A_iso ? "Ax [0]" : "Ax [p]", ctype, atype) ;
// no copy of cwork to C
fprintf (fp, "#define GB_COPY_cwork_to_C(Cx,pC,cwork,C_iso)"
" /* unused */\n") ;
// no copy of scalar to cwork
fprintf (fp, "#define GB_COPY_scalar_to_cwork(cwork,scalar)"
" /* unused */\n") ;
}
// xwork = (xtype) C(i,j), if needed
if (need_copy_c_to_xwork)
{
ASSERT (accum != NULL) ;
ASSERT (!C_iso) ;
ASSERT (xtype != ctype) ;
GB_macrofy_cast_input (fp, "GB_COPY_C_to_xwork", "xwork",
"Cx,p", "Cx [p]", xtype, ctype) ;
}
//--------------------------------------------------------------------------
// construct the macros to access the mask (if any), and its name
//--------------------------------------------------------------------------
GB_macrofy_mask (fp, mask_ecode, "M", msparsity,
Mp_is_32, Mj_is_32, Mi_is_32) ;
//--------------------------------------------------------------------------
// construct the macros for A or the scalar, including typecast to Y type
//--------------------------------------------------------------------------
bool did_scalar_to_ywork = false ;
bool did_aij_to_ywork = false ;
if (s_assign)
{
// scalar assignment
fprintf (fp, "\n// scalar:\n") ;
GB_macrofy_type (fp, "A", "_", atype->name) ;
if (accum != NULL)
{
// accum is present
// ywork = (ytype) scalar
GB_macrofy_cast_input (fp, "GB_COPY_scalar_to_ywork", "ywork",
"scalar", "(*((GB_A_TYPE *) scalar))", ytype, atype) ;
did_scalar_to_ywork = true ;
}
GB_macrofy_sparsity (fp, "A", -1) ; // unused macros
fprintf (fp, "#define GB_A_NVALS(e) int64_t e = 1 ; /* unused */\n") ;
fprintf (fp, "#define GB_A_NHELD(e) int64_t e = 1 ; /* unused */\n") ;
GB_macrofy_bits (fp, "A", false, false, false) ;
}
else
{
// matrix assignment
GB_macrofy_input (fp, "a", "A", "A", true, ytype, atype, asparsity,
acode, A_iso, -1, Ap_is_32, Aj_is_32, Ai_is_32) ;
if (accum != NULL)
{
// accum is present
// ywork = (ytype) A(i,j)
fprintf (fp, "#define GB_COPY_aij_to_ywork(ywork,Ax,pA,A_iso) "
"GB_GETA (ywork, Ax, pA, A_iso)\n") ;
did_aij_to_ywork = true ;
}
}
if (!did_scalar_to_ywork)
{
fprintf (fp, "#define GB_COPY_scalar_to_ywork(ywork,scalar)"
" /* unused */\n") ;
}
if (!did_aij_to_ywork)
{
fprintf (fp, "#define GB_COPY_aij_to_ywork(ywork,Ax,pA,A_iso)"
" /* unused */\n") ;
}
//--------------------------------------------------------------------------
// construct the macros for S
//--------------------------------------------------------------------------
if (S_present)
{
GB_macrofy_sparsity (fp, "S", ssparsity) ;
fprintf (fp, "#define GB_S_CONSTRUCTED 1\n") ;
GB_macrofy_bits (fp, "S", Sp_is_32, Sj_is_32, Si_is_32) ;
fprintf (fp, "#define GB_Sx_BITS %d\n", Sx_is_32 ? 32 : 64) ;
fprintf (fp, "#define GB_Sx_TYPE uint%d_t\n", Sx_is_32 ? 32 : 64) ;
}
else
{
fprintf (fp, "\n// S matrix: not constructed\n") ;
fprintf (fp, "#define GB_S_CONSTRUCTED 0\n") ;
}
//--------------------------------------------------------------------------
// include the final default definitions
//--------------------------------------------------------------------------
fprintf (fp, "\n#include \"include/GB_assign_shared_definitions.h\"\n") ;
}
|