1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
|
//------------------------------------------------------------------------------
// GB_macrofy_binop: construct the macro and defn for a binary operator
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB.h"
#include "math/GB_math.h"
#include "jitifyer/GB_stringify.h"
#include <ctype.h>
void GB_macrofy_binop
(
FILE *fp,
// input:
const char *macro_name,
bool flipij, // if true: op is f(x,y,j,i) for ewise ops
bool flipxy, // if true: op is f(y,x) for a semiring
bool is_monoid_or_build, // if true: additive operator for monoid,
// or binary op for GrB_Matrix_build, or
// accum operator
bool is_ewise, // if true: binop for ewise methods
bool is_kron, // if true: binop for kronecker
int ecode, // binary operator ecode from GB_enumify_binop
bool C_iso, // if true: C is iso
GrB_BinaryOp op,
// output:
const char **f_handle, // basic expression z=f(x,y)
const char **u_handle, // update z=f(z,y) for the CPU
const char **g_handle // update z=f(z,y) for the GPU (if different)
)
{
const char *f = NULL, *u = NULL, *g = NULL ;
const char *karg = is_ewise ? "" : ",k" ;
if (C_iso)
{
//----------------------------------------------------------------------
// C is iso: no operator
//----------------------------------------------------------------------
if (is_monoid_or_build)
{
if (op->ztype == op->xtype)
{
fprintf (fp, "#define GB_UPDATE(z,y)\n") ;
}
fprintf (fp, "#define %s(z,x,y)\n", macro_name) ;
}
else if (is_kron)
{
fprintf (fp, "#define %s(z,x,ix,jx,y,iy,jy)\n", macro_name) ;
}
else
{
fprintf (fp, "#define %s(z,x,y,i%s,j)\n", macro_name, karg) ;
}
}
else if (ecode == 0)
{
//----------------------------------------------------------------------
// user-defined operator
//----------------------------------------------------------------------
ASSERT (op != NULL) ;
GB_macrofy_defn (fp, 3, op->name, op->defn) ;
if (is_monoid_or_build)
{
// additive/build operator: no i,k,j parameters, never flipped
fprintf (fp, "#define %s(z,x,y) ", macro_name) ;
}
else if (is_kron)
{
// operator for kronecker
if (flipij)
{
fprintf (fp, "#define %s(z,x,jx,ix,y,jy,iy) ", macro_name) ;
}
else
{
fprintf (fp, "#define %s(z,x,ix,jx,y,iy,jy) ", macro_name) ;
}
}
else if (flipxy)
{
// flipped multiplicative operator (flip both xy and ij),
// for mxm (including rowscale and colscale) only
fprintf (fp, "#define %s(z,y,x,j%s,i) ", macro_name, karg) ;
}
else if (flipij)
{
// i,j flipped ewise operator (just flip ij, do not flip xy)
ASSERT (is_ewise) ;
fprintf (fp, "#define %s(z,x,y,j,i) ", macro_name) ;
}
else
{
// unflipped multiplicative or ewise operator
fprintf (fp, "#define %s(z,x,y,i%s,j) ", macro_name, karg) ;
}
if (GB_IS_INDEXBINARYOP_CODE (op->opcode))
{
// user-defined index binary op
ASSERT (!is_monoid_or_build) ;
if (is_kron)
{
fprintf (fp, " %s (&(z), &(x),ix,jx, &(y),iy,jy, theta)\n",
op->name) ;
}
else
{
const char *xindices = is_ewise ? "i,j" : "i,k" ;
const char *yindices = is_ewise ? "i,j" : "k,j" ;
fprintf (fp, " %s (&(z), &(x),%s, &(y),%s, theta)\n",
op->name, xindices, yindices) ;
}
}
else
{
fprintf (fp, " %s (&(z), &(x), &(y))\n", op->name) ;
}
if (is_monoid_or_build && op->ztype == op->xtype)
{
fprintf (fp, "#define GB_UPDATE(z,y) %s(z,z,y)\n", macro_name) ;
}
}
else
{
//----------------------------------------------------------------------
// built-in operator
//----------------------------------------------------------------------
switch (ecode)
{
//------------------------------------------------------------------
// built-in ops, can be used in a monoid or build
//------------------------------------------------------------------
// first
case 1 :
f = "z = x" ;
u = "" ;
break ;
// any, second
case 2 :
f = "z = y" ;
u = "z = y" ;
break ;
// min (float)
case 3 :
f = "z = fminf (x,y)" ;
g = "z = fminf (z,y)" ;
u = "if (!isnan (y) && !islessequal (z,y)) { z = y ; }" ;
break ;
// min (double)
case 4 :
f = "z = fmin (x,y)" ;
g = "z = fmin (z,y)" ;
u = "if (!isnan (y) && !islessequal (z,y)) { z = y ; }" ;
break ;
// min (integer)
case 5 :
f = "z = (((x) < (y)) ? (x) : (y))" ;
g = "z = (((z) < (y)) ? (z) : (y))" ;
u = "if ((z) > (y)) { z = y ; }" ;
break ;
// max (float)
case 6 :
f = "z = fmaxf (x,y)" ;
g = "z = fmaxf (z,y)" ;
u = "if (!isnan (y) && !isgreaterequal (z,y)) { z = y ; }" ;
break ;
// max (double)
case 7 :
f = "z = fmax (x,y)" ;
g = "z = fmax (z,y)" ;
u = "if (!isnan (y) && !isgreaterequal (z,y)) { z = y ; }" ;
break ;
// max (integer)
case 8 :
f = "z = (((x) > (y)) ? (x) : (y))" ;
g = "z = (((z) > (y)) ? (z) : (y))" ;
u = "if ((z) < (y)) { z = y ; }" ;
break ;
// plus (complex)
case 9 :
f = "z = GB_FC32_add (x,y)" ;
break ;
case 10 :
f = "z = GB_FC64_add (x,y)" ;
break ;
// plus (real)
case 11 :
f = "z = (x) + (y)" ;
u = "z += y" ; // plus real update
break ;
// times (complex)
case 12 :
f = "z = GB_FC32_mul (x,y)" ;
break ;
case 13 :
f = "z = GB_FC64_mul (x,y)" ;
break ;
// times (real)
case 14 :
f = "z = (x) * (y)" ;
u = "z *= y" ; // times real update
break ;
// eq, lxnor (only a monoid for the boolean lxnor)
case 15 :
f = "z = ((x) == (y))" ;
u = "z = (z == (y))" ;
break ;
// lxor
case 16 :
f = "z = ((x) != (y))" ;
u = "z ^= y" ; // lxor update
break ;
// lor
case 17 :
f = "z = ((x) || (y))" ;
u = "z |= y" ; // lor update
break ;
// land
case 18 :
f = "z = ((x) && (y))" ;
u = "z &= y" ; // land update
break ;
// bor
case 19 :
f = "z = ((x) | (y))" ;
u = "z |= y" ; // bor update
break ;
// band
case 20 :
f = "z = ((x) & (y))" ;
u = "z &= y" ; // band update
break ;
// bxor
case 21 :
f = "z = ((x) ^ (y))" ;
u = "z ^= y" ; // bxor update
break ;
// bxnor
case 22 :
f = "z = (~((x) ^ (y)))" ;
u = "z = (~(z ^ (y)))" ;
break ;
// 23 to 31 are unused, but reserved for future monoids
//------------------------------------------------------------------
// built-in ops, cannot be used in a monoid
//------------------------------------------------------------------
// eq for complex
case 32 :
f = "z = GB_FC32_eq (x,y)" ;
break ;
case 33 :
f = "z = GB_FC64_eq (x,y)" ;
break ;
// iseq for non-boolean real
case 142 :
f = "z = (GB_Z_TYPE) ((x) == (y))" ;
break ;
// iseq for complex
case 34 :
f = "z = GB_FC32_iseq (x,y)" ;
break ;
case 35 :
f = "z = GB_FC64_iseq (x,y)" ;
break ;
// ne
case 141 :
f = "z = ((x) != (y))" ;
u = "z = (z != (y))" ;
break ;
// ne for complex
case 36 :
f = "z = GB_FC32_ne (x,y)" ;
break ;
case 37 :
f = "z = GB_FC64_ne (x,y)" ;
break ;
// isne for non-boolean real
case 143 :
f = "z = (GB_Z_TYPE) ((x) != (y))" ;
break ;
// isne for complex
case 38 :
f = "z = GB_FC32_isne (x,y)" ;
break ;
case 39 :
f = "z = GB_FC64_isne (x,y)" ;
break ;
// lor for non-boolean
case 40 : f = "z = (GB_Z_TYPE) (((x)!=0) || ((y)!=0))" ; break ;
// land for non-boolean
case 41 : f = "z = (GB_Z_TYPE) (((x)!=0) && ((y)!=0))" ; break ;
// lxor for non-boolean
case 42 : f = "z = (GB_Z_TYPE) (((x)!=0) != ((y)!=0))" ; break ;
// minus
case 43 :
f = "z = GB_FC32_minus (x,y)" ;
break ;
case 44 :
f = "z = GB_FC64_minus (x,y)" ;
break ;
case 45 :
f = "z = (x) - (y)" ;
u = "z -= y" ;
break ;
// rminus
case 46 :
f = "z = GB_FC32_minus (y,x)" ;
break ;
case 47 :
f = "z = GB_FC64_minus (y,x)" ;
break ;
case 48 :
f = "z = (y) - (x)" ;
break ;
// div (integer)
case 49 :
f = "z = GJ_idiv_int8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_int8", GJ_idiv_int8_DEFN) ;
break ;
case 50 :
f = "z = GJ_idiv_int16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_int16", GJ_idiv_int16_DEFN) ;
break ;
case 51 :
f = "z = GJ_idiv_int32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_int32", GJ_idiv_int32_DEFN) ;
break ;
case 52 :
f = "z = GJ_idiv_int64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_int64", GJ_idiv_int64_DEFN) ;
break ;
case 53 :
f = "z = GJ_idiv_uint8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_uint8", GJ_idiv_uint8_DEFN) ;
break ;
case 54 :
f = "z = GJ_idiv_uint16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_uint16", GJ_idiv_uint16_DEFN) ;
break ;
case 55 :
f = "z = GJ_idiv_uint32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_uint32", GJ_idiv_uint32_DEFN) ;
break ;
case 56 :
f = "z = GJ_idiv_uint64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_uint64", GJ_idiv_uint64_DEFN) ;
break ;
// div (complex floating-point)
case 57 :
f = "z = GJ_FC32_div (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_FC64_div", GJ_FC64_div_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_FC32_div", GJ_FC32_div_DEFN) ;
break ;
case 58 :
f = "z = GJ_FC64_div (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_FC64_div", GJ_FC64_div_DEFN) ;
break ;
// div (float and double)
case 59 :
f = "z = (x) / (y)" ;
u = "z /= y" ;
break ;
// rdiv (integer)
case 60 :
f = "z = GJ_idiv_int8 (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_int8", GJ_idiv_int8_DEFN) ;
break ;
case 61 :
f = "z = GJ_idiv_int16 (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_int16", GJ_idiv_int16_DEFN) ;
break ;
case 62 :
f = "z = GJ_idiv_int32 (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_int32", GJ_idiv_int32_DEFN) ;
break ;
case 63 :
f = "z = GJ_idiv_int64 (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_int64", GJ_idiv_int64_DEFN) ;
break ;
case 64 :
f = "z = GJ_idiv_uint8 (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_uint8", GJ_idiv_uint8_DEFN) ;
break ;
case 65 :
f = "z = GJ_idiv_uint16 (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_uint16", GJ_idiv_uint16_DEFN) ;
break ;
case 66 :
f = "z = GJ_idiv_uint32 (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_uint32", GJ_idiv_uint32_DEFN) ;
break ;
case 67 :
f = "z = GJ_idiv_uint64 (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_idiv_uint64", GJ_idiv_uint64_DEFN) ;
break ;
// rdiv (complex floating-point)
case 68 :
f = "z = GJ_FC32_div (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_FC64_div", GJ_FC64_div_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_FC32_div", GJ_FC32_div_DEFN) ;
break ;
case 69 :
f = "z = GJ_FC64_div (y,x)" ;
GB_macrofy_defn (fp, 0, "GJ_FC64_div", GJ_FC64_div_DEFN) ;
break ;
// rdiv (real floating-point)
case 70 : f = "z = (y) / (x)" ; break ;
// gt
case 71 : f = "z = ((x) > (y))" ; break ;
// isgt
case 144 : f = "z = (GB_Z_TYPE) ((x) > (y))" ; break ;
// lt
case 72 : f = "z = ((x) < (y))" ; break ;
// islt
case 145 : f = "z = (GB_Z_TYPE) ((x) < (y))" ; break ;
// ge
case 73 : f = "z = ((x) >= (y))" ; break ;
// isge
case 146 : f = "z = (GB_Z_TYPE) ((x) >= (y))" ; break ;
// le
case 74 : f = "z = ((x) <= (y))" ; break ;
// isle
case 147 : f = "z = (GB_Z_TYPE) ((x) <= (y))" ; break ;
// bget
case 75 :
f = "z = GJ_bitget_int8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitget_int8", GJ_bitget_int8_DEFN) ;
break ;
case 76 :
f = "z = GJ_bitget_int16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitget_int16", GJ_bitget_int16_DEFN) ;
break ;
case 77 :
f = "z = GJ_bitget_int32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitget_int32", GJ_bitget_int32_DEFN) ;
break ;
case 78 :
f = "z = GJ_bitget_int64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitget_int64", GJ_bitget_int64_DEFN) ;
break ;
case 79 :
f = "z = GJ_bitget_uint8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitget_uint8", GJ_bitget_uint8_DEFN) ;
break ;
case 80 :
f = "z = GJ_bitget_uint16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitget_uint16", GJ_bitget_uint16_DEFN) ;
break ;
case 81 :
f = "z = GJ_bitget_uint32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitget_uint32", GJ_bitget_uint32_DEFN) ;
break ;
case 82 :
f = "z = GJ_bitget_uint64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitget_uint64", GJ_bitget_uint64_DEFN) ;
break ;
// bset
case 83 :
f = "z = GJ_bitset_int8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitset_int8", GJ_bitset_int8_DEFN) ;
break ;
case 84 :
f = "z = GJ_bitset_int16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitset_int16", GJ_bitset_int16_DEFN) ;
break ;
case 85 :
f = "z = GJ_bitset_int32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitset_int32", GJ_bitset_int32_DEFN) ;
break ;
case 86 :
f = "z = GJ_bitset_int64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitset_int64", GJ_bitset_int64_DEFN) ;
break ;
case 87 :
f = "z = GJ_bitset_uint8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitset_uint8", GJ_bitset_uint8_DEFN) ;
break ;
case 88 :
f = "z = GJ_bitset_uint16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitset_uint16", GJ_bitset_uint16_DEFN) ;
break ;
case 89 :
f = "z = GJ_bitset_uint32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitset_uint32", GJ_bitset_uint32_DEFN) ;
break ;
case 90 :
f = "z = GJ_bitset_uint64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitset_uint64", GJ_bitset_uint64_DEFN) ;
break ;
// bclr
case 91 :
f = "z = GJ_bitclr_int8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitclr_int8", GJ_bitclr_int8_DEFN) ;
break ;
case 92 :
f = "z = GJ_bitclr_int16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitclr_int16", GJ_bitclr_int16_DEFN) ;
break ;
case 93 :
f = "z = GJ_bitclr_int32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitclr_int32", GJ_bitclr_int32_DEFN) ;
break ;
case 94 :
f = "z = GJ_bitclr_int64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitclr_int64", GJ_bitclr_int64_DEFN) ;
break ;
case 95 :
f = "z = GJ_bitclr_uint8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitclr_uint8", GJ_bitclr_uint8_DEFN) ;
break ;
case 96 :
f = "z = GJ_bitclr_uint16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitclr_uint16", GJ_bitclr_uint16_DEFN) ;
break ;
case 97 :
f = "z = GJ_bitclr_uint32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitclr_uint32", GJ_bitclr_uint32_DEFN) ;
break ;
case 98 :
f = "z = GJ_bitclr_uint64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitclr_uint64", GJ_bitclr_uint64_DEFN) ;
break ;
// bshift
case 99 :
f = "z = GJ_bitshift_int8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitshift_int8", GJ_bitshift_int8_DEFN) ;
break ;
case 100 :
f = "z = GJ_bitshift_int16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitshift_int16", GJ_bitshift_int16_DEFN) ;
break ;
case 101 :
f = "z = GJ_bitshift_int32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitshift_int32", GJ_bitshift_int32_DEFN) ;
break ;
case 102 :
f = "z = GJ_bitshift_int64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitshift_int64", GJ_bitshift_int64_DEFN) ;
break ;
case 103 :
f = "z = GJ_bitshift_uint8 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitshift_uint8", GJ_bitshift_uint8_DEFN) ;
break ;
case 104 :
f = "z = GJ_bitshift_uint16 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitshift_uint16", GJ_bitshift_uint16_DEFN) ;
break ;
case 105 :
f = "z = GJ_bitshift_uint32 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitshift_uint32", GJ_bitshift_uint32_DEFN) ;
break ;
case 106 :
f = "z = GJ_bitshift_uint64 (x,y)" ;
GB_macrofy_defn (fp, 0, "GJ_bitshift_uint64", GJ_bitshift_uint64_DEFN) ;
break ;
// pow (integer cases)
case 107 :
f = "z = GJ_pow_int8 (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_cast_to_int8", GJ_cast_to_int8_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_pow_int8", GJ_pow_int8_DEFN) ;
break ;
case 108 :
f = "z = GJ_pow_int16 (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_cast_to_int16", GJ_cast_to_int16_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_pow_int16", GJ_pow_int16_DEFN) ;
break ;
case 109 :
f = "z = GJ_pow_int32 (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_cast_to_int32", GJ_cast_to_int32_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_pow_int32", GJ_pow_int32_DEFN) ;
break ;
case 110 :
f = "z = GJ_pow_int64 (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_cast_to_int32", GJ_cast_to_int64_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_pow_int64", GJ_pow_int64_DEFN) ;
break ;
case 111 :
f = "z = GJ_pow_uint8 (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_cast_to_uint8", GJ_cast_to_uint8_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_pow_uint8", GJ_pow_uint8_DEFN) ;
break ;
case 112 :
f = "z = GJ_pow_uint16 (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_cast_to_uint16", GJ_cast_to_uint16_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_pow_uint16", GJ_pow_uint16_DEFN) ;
break ;
case 113 :
f = "z = GJ_pow_uint32 (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_cast_to_uint32", GJ_cast_to_uint32_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_pow_uint32", GJ_pow_uint32_DEFN) ;
break ;
case 114 :
f = "z = GJ_pow_uint64 (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_cast_to_uint64", GJ_cast_to_uint64_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_pow_uint64", GJ_pow_uint64_DEFN) ;
break ;
// pow (float and double)
case 115 :
f = "z = GJ_powf (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_powf", GJ_powf_DEFN) ;
break ;
case 116 :
f = "z = GJ_pow (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
break ;
// pow (complex float and double)
case 117 :
f = "z = GJ_FC32_pow (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_powf", GJ_powf_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_FC32_pow", GJ_FC32_pow_DEFN) ;
break ;
case 118 :
f = "z = GJ_FC64_pow (x, y)" ;
GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
GB_macrofy_defn (fp, 0, "GJ_FC64_pow", GJ_FC64_pow_DEFN) ;
break ;
// atan2
case 119 : f = "z = atan2f (x, y)" ; break ;
case 120 : f = "z = atan2 (x, y)" ; break ;
// hypot
case 121 : f = "z = hypotf (x, y)" ; break ;
case 122 : f = "z = hypot (x, y)" ; break ;
// fmod
case 123 : f = "z = fmodf (x, y)" ; break ;
case 124 : f = "z = fmod (x, y)" ; break ;
// remainder
case 125 : f = "z = remainderf (x, y)" ; break ;
case 126 : f = "z = remainder (x, y)" ; break ;
// copysign
case 127 : f = "z = copysignf (x, y)" ; break ;
case 128 : f = "z = copysign (x, y)" ; break ;
// ldexp
case 129 : f = "z = ldexpf (x, y)" ; break ;
case 130 : f = "z = ldexp (x, y)" ; break ;
// cmplex
case 131 : f = "z = GJ_CMPLX32 (x, y)" ; break ;
case 132 : f = "z = GJ_CMPLX64 (x, y)" ; break ;
// pair, real
case 133 : f = "z = 1" ; break ;
// pair, single complex
case 148 : f = "z = GxB_CMPLXF (1,0)" ; break ;
// pair, double complex
case 149 : f = "z = GxB_CMPLX (1,0)" ; break ;
//------------------------------------------------------------------
// builtin positional ops
//------------------------------------------------------------------
// in a semiring: cij += aik * bkj
// firsti is i, firstj is k, secondi k, secondj is j
// in an ewise operation: cij = aij + bij
// firsti is i, firstj is j, secondi i, secondj is j
case 134 : f = "z = (i)" ; break ;
case 135 : f = "z = (k)" ; break ;
case 136 : f = "z = (j)" ; break ;
case 137 : f = "z = (i) + 1" ; break ;
case 138 : f = "z = (k) + 1" ; break ;
case 139 : f = "z = (j) + 1" ; break ;
// for kron, all these ops are unique:
case 150 : f = "z = (ix)" ; break ; // firsti
case 151 : f = "z = (ix)+1" ; break ; // firsti1
case 152 : f = "z = (jx)" ; break ; // firstj
case 153 : f = "z = (jx)+1" ; break ; // firstj1
case 154 : f = "z = (iy)" ; break ; // secondi
case 155 : f = "z = (iy)+1" ; break ; // secondi1
case 156 : f = "z = (jy)" ; break ; // secondj
case 157 : f = "z = (jy)+1" ; break ; // secondj1
//------------------------------------------------------------------
// no-op: same as second operator
//------------------------------------------------------------------
default : f = "z = y" ; break ;
}
//----------------------------------------------------------------------
// create the macro
//----------------------------------------------------------------------
if (is_monoid_or_build)
{
// additive operator: no i,k,j parameters
fprintf (fp, "#define %s(z,x,y) %s\n", macro_name, f) ;
if (op->ztype == op->xtype)
{
if (g != NULL)
{
// create an update expression of the form z += y,
// but it differs for the CPU and CUDA JIT kernels
fprintf (fp, "#ifdef GB_CUDA_KERNEL\n"
"#define GB_UPDATE(z,y) %s\n"
"#else\n"
"#define GB_UPDATE(z,y) %s\n"
"#endif\n", g, u) ;
}
else if (u != NULL)
{
// create an update expression of the form z += y
fprintf (fp, "#define GB_UPDATE(z,y) %s\n", u) ;
}
else
{
// create an update expression of the form z = z + y
fprintf (fp, "#define GB_UPDATE(z,y) %s(z,z,y)\n",
macro_name) ;
}
}
}
else if (is_kron)
{
// operator for kronecker
if (flipij)
{
fprintf (fp, "#define %s(z,x,jx,ix,y,jy,iy) %s\n",
macro_name, f) ;
}
else
{
fprintf (fp, "#define %s(z,x,ix,jx,y,iy,jy) %s\n",
macro_name, f) ;
}
}
else if (flipxy)
{
// flipped multiplicative or ewise operator
fprintf (fp, "#define %s(z,y,x,j%s,i) %s\n", macro_name, karg, f) ;
}
else
{
// unflipped multiplicative or ewise operator
fprintf (fp, "#define %s(z,x,y,i%s,j) %s\n", macro_name, karg, f) ;
}
}
//--------------------------------------------------------------------------
// return the u, f, and g expressions
//--------------------------------------------------------------------------
if (u_handle != NULL) (*u_handle) = u ;
if (f_handle != NULL) (*f_handle) = f ;
if (g_handle != NULL) (*g_handle) = g ;
}
|