File: GB_macrofy_binop.c

package info (click to toggle)
suitesparse 1%3A7.10.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 254,920 kB
  • sloc: ansic: 1,134,743; cpp: 46,133; makefile: 4,875; fortran: 2,087; java: 1,826; sh: 996; ruby: 725; python: 495; asm: 371; sed: 166; awk: 44
file content (838 lines) | stat: -rw-r--r-- 30,926 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
//------------------------------------------------------------------------------
// GB_macrofy_binop: construct the macro and defn for a binary operator
//------------------------------------------------------------------------------

// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//------------------------------------------------------------------------------

#include "GB.h"
#include "math/GB_math.h"
#include "jitifyer/GB_stringify.h"
#include <ctype.h>

void GB_macrofy_binop
(
    FILE *fp,
    // input:
    const char *macro_name,
    bool flipij,                // if true: op is f(x,y,j,i) for ewise ops
    bool flipxy,                // if true: op is f(y,x) for a semiring
    bool is_monoid_or_build,    // if true: additive operator for monoid,
                                // or binary op for GrB_Matrix_build, or
                                // accum operator
    bool is_ewise,              // if true: binop for ewise methods
    bool is_kron,               // if true: binop for kronecker
    int ecode,                  // binary operator ecode from GB_enumify_binop
    bool C_iso,                 // if true: C is iso
    GrB_BinaryOp op,
    // output:
    const char **f_handle,      // basic expression z=f(x,y)
    const char **u_handle,      // update z=f(z,y) for the CPU
    const char **g_handle       // update z=f(z,y) for the GPU (if different)
)
{

    const char *f = NULL, *u = NULL, *g = NULL ;
    const char *karg = is_ewise ? "" : ",k" ;

    if (C_iso)
    {

        //----------------------------------------------------------------------
        // C is iso: no operator
        //----------------------------------------------------------------------

        if (is_monoid_or_build)
        {
            if (op->ztype == op->xtype)
            { 
                fprintf (fp, "#define GB_UPDATE(z,y)\n") ;
            }
            fprintf (fp, "#define %s(z,x,y)\n", macro_name) ;
        }
        else if (is_kron)
        { 
            fprintf (fp, "#define %s(z,x,ix,jx,y,iy,jy)\n", macro_name) ;
        }
        else
        { 
            fprintf (fp, "#define %s(z,x,y,i%s,j)\n", macro_name, karg) ;
        }

    }
    else if (ecode == 0)
    {

        //----------------------------------------------------------------------
        // user-defined operator
        //----------------------------------------------------------------------

        ASSERT (op != NULL) ;
        GB_macrofy_defn (fp, 3, op->name, op->defn) ;

        if (is_monoid_or_build)
        { 
            // additive/build operator: no i,k,j parameters, never flipped
            fprintf (fp, "#define %s(z,x,y) ", macro_name) ;
        }
        else if (is_kron)
        {
            // operator for kronecker
            if (flipij)
            { 
                fprintf (fp, "#define %s(z,x,jx,ix,y,jy,iy) ", macro_name) ;
            }
            else
            { 
                fprintf (fp, "#define %s(z,x,ix,jx,y,iy,jy) ", macro_name) ;
            }
        }
        else if (flipxy)
        { 
            // flipped multiplicative operator (flip both xy and ij),
            // for mxm (including rowscale and colscale) only
            fprintf (fp, "#define %s(z,y,x,j%s,i) ", macro_name, karg) ;
        }
        else if (flipij)
        { 
            // i,j flipped ewise operator (just flip ij, do not flip xy)
            ASSERT (is_ewise) ;
            fprintf (fp, "#define %s(z,x,y,j,i) ", macro_name) ;
        }
        else
        { 
            // unflipped multiplicative or ewise operator
            fprintf (fp, "#define %s(z,x,y,i%s,j) ", macro_name, karg) ;
        }

        if (GB_IS_INDEXBINARYOP_CODE (op->opcode))
        { 
            // user-defined index binary op
            ASSERT (!is_monoid_or_build) ;
            if (is_kron)
            { 
                fprintf (fp, " %s (&(z), &(x),ix,jx, &(y),iy,jy, theta)\n",
                    op->name) ;
            }
            else
            { 
                const char *xindices = is_ewise ? "i,j" : "i,k" ;
                const char *yindices = is_ewise ? "i,j" : "k,j" ;
                fprintf (fp, " %s (&(z), &(x),%s, &(y),%s, theta)\n",
                    op->name, xindices, yindices) ;
            }
        }
        else
        { 
            fprintf (fp, " %s (&(z), &(x), &(y))\n", op->name) ;
        }

        if (is_monoid_or_build && op->ztype == op->xtype)
        { 
            fprintf (fp, "#define GB_UPDATE(z,y) %s(z,z,y)\n", macro_name) ;
        }

    }
    else
    {

        //----------------------------------------------------------------------
        // built-in operator
        //----------------------------------------------------------------------

        switch (ecode)
        {

            //------------------------------------------------------------------
            // built-in ops, can be used in a monoid or build
            //------------------------------------------------------------------

            // first
            case   1 : 
                f = "z = x" ;
                u = "" ;
                break ;

            // any, second
            case   2 : 
                f = "z = y" ;
                u = "z = y" ;
                break ;

            // min (float)
            case   3 : 
                f = "z = fminf (x,y)" ;
                g = "z = fminf (z,y)" ;
                u = "if (!isnan (y) && !islessequal (z,y)) { z = y ; }" ;
                break ;

            // min (double)
            case   4 : 
                f = "z = fmin (x,y)" ;
                g = "z = fmin (z,y)" ;
                u = "if (!isnan (y) && !islessequal (z,y)) { z = y ; }" ;
                break ;

            // min (integer)
            case   5 : 
                f = "z = (((x) < (y)) ? (x) : (y))" ;
                g = "z = (((z) < (y)) ? (z) : (y))" ;
                u = "if ((z) > (y)) { z = y ; }" ;
                break ;

            // max (float)
            case   6 : 
                f = "z = fmaxf (x,y)" ;
                g = "z = fmaxf (z,y)" ;
                u = "if (!isnan (y) && !isgreaterequal (z,y)) { z = y ; }" ;
                break ;

            // max (double)
            case   7 : 
                f = "z = fmax (x,y)" ;
                g = "z = fmax (z,y)" ;
                u = "if (!isnan (y) && !isgreaterequal (z,y)) { z = y ; }" ;
                break ;

            // max (integer)
            case   8 : 
                f = "z = (((x) > (y)) ? (x) : (y))" ;
                g = "z = (((z) > (y)) ? (z) : (y))" ;
                u = "if ((z) < (y)) { z = y ; }" ;
                break ;

            // plus (complex)
            case   9 : 
                f = "z = GB_FC32_add (x,y)" ;
                break ;

            case  10 : 
                f = "z = GB_FC64_add (x,y)" ;
                break ;

            // plus (real)
            case  11 : 
                f = "z = (x) + (y)" ;
                u = "z += y" ;              // plus real update
                break ;

            // times (complex)
            case  12 : 
                f = "z = GB_FC32_mul (x,y)" ;
                break ;
            case  13 : 
                f = "z = GB_FC64_mul (x,y)" ;
                break ;

            // times (real)
            case  14 : 
                f = "z = (x) * (y)" ;
                u = "z *= y" ;              // times real update
                break ;

            // eq, lxnor (only a monoid for the boolean lxnor)
            case  15 : 
                f = "z = ((x) == (y))" ;
                u = "z = (z == (y))" ;
                break ;

            // lxor
            case  16 : 
                f = "z = ((x) != (y))" ;
                u = "z ^= y" ;              // lxor update
                break ;

            // lor
            case  17 : 
                f = "z = ((x) || (y))" ;
                u = "z |= y" ;              // lor update
                break ;

            // land
            case  18 : 
                f = "z = ((x) && (y))" ;
                u = "z &= y" ;              // land update
                break ;

            // bor
            case  19 : 
                f = "z = ((x) | (y))" ;
                u = "z |= y" ;              // bor update
                break ;

            // band
            case  20 : 
                f = "z = ((x) & (y))" ;
                u = "z &= y" ;              // band update
                break ;

            // bxor
            case  21 : 
                f = "z = ((x) ^ (y))" ;
                u = "z ^= y" ;              // bxor update
                break ;

            // bxnor
            case  22 : 
                f = "z = (~((x) ^ (y)))" ;
                u = "z = (~(z ^ (y)))" ;
                break ;

            // 23 to 31 are unused, but reserved for future monoids

            //------------------------------------------------------------------
            // built-in ops, cannot be used in a monoid
            //------------------------------------------------------------------

            // eq for complex
            case  32 : 
                f = "z = GB_FC32_eq (x,y)" ;
                break ;
            case  33 : 
                f = "z = GB_FC64_eq (x,y)" ;
                break ;

            // iseq for non-boolean real
            case 142 : 
                f = "z = (GB_Z_TYPE) ((x) == (y))" ;
                break ;

            // iseq for complex
            case  34 : 
                f = "z = GB_FC32_iseq (x,y)" ;
                break ;
            case  35 : 
                f = "z = GB_FC64_iseq (x,y)" ;
                break ;

            // ne
            case 141 : 
                f = "z = ((x) != (y))" ;
                u = "z = (z != (y))" ;
                break ;

            // ne for complex
            case  36 : 
                f = "z = GB_FC32_ne (x,y)" ;
                break ;
            case  37 : 
                f = "z = GB_FC64_ne (x,y)" ;
                break ;

            // isne for non-boolean real
            case 143 : 
                f = "z = (GB_Z_TYPE) ((x) != (y))" ;
                break ;

            // isne for complex
            case  38 : 
                f = "z = GB_FC32_isne (x,y)" ;
                break ;
            case  39 : 
                f = "z = GB_FC64_isne (x,y)" ;
                break ;

            // lor for non-boolean
            case  40 : f = "z = (GB_Z_TYPE) (((x)!=0) || ((y)!=0))" ; break ;

            // land for non-boolean
            case  41 : f = "z = (GB_Z_TYPE) (((x)!=0) && ((y)!=0))" ; break ;

            // lxor for non-boolean
            case  42 : f = "z = (GB_Z_TYPE) (((x)!=0) != ((y)!=0))" ; break ;

            // minus
            case  43 : 
                f = "z = GB_FC32_minus (x,y)" ;
                break ;
            case  44 : 
                f = "z = GB_FC64_minus (x,y)" ;
                break ;
            case  45 : 
                f = "z = (x) - (y)" ;
                u = "z -= y" ;
                break ;

            // rminus
            case  46 : 
                f = "z = GB_FC32_minus (y,x)" ;
                break ;
            case  47 : 
                f = "z = GB_FC64_minus (y,x)" ;
                break ;
            case  48 : 
                f = "z = (y) - (x)" ;
                break ;

            // div (integer)
            case  49 : 
                f = "z = GJ_idiv_int8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_int8", GJ_idiv_int8_DEFN) ;
                break ;
            case  50 : 
                f = "z = GJ_idiv_int16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_int16", GJ_idiv_int16_DEFN) ;
                break ;
            case  51 : 
                f = "z = GJ_idiv_int32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_int32", GJ_idiv_int32_DEFN) ;
                break ;
            case  52 : 
                f = "z = GJ_idiv_int64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_int64", GJ_idiv_int64_DEFN) ;
                break ;
            case  53 : 
                f = "z = GJ_idiv_uint8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_uint8", GJ_idiv_uint8_DEFN) ;
                break ;
            case  54 : 
                f = "z = GJ_idiv_uint16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_uint16", GJ_idiv_uint16_DEFN) ;
                break ;
            case  55 : 
                f = "z = GJ_idiv_uint32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_uint32", GJ_idiv_uint32_DEFN) ;
                break ;
            case  56 : 
                f = "z = GJ_idiv_uint64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_uint64", GJ_idiv_uint64_DEFN) ;
                break ;

            // div (complex floating-point)
            case  57 : 
                f = "z = GJ_FC32_div (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_FC64_div", GJ_FC64_div_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_FC32_div", GJ_FC32_div_DEFN) ;
                break ;
            case  58 : 
                f = "z = GJ_FC64_div (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_FC64_div", GJ_FC64_div_DEFN) ;
                break ;

            // div (float and double)
            case  59 : 
                f = "z = (x) / (y)" ;
                u = "z /= y" ;
                break ;

            // rdiv (integer)
            case  60 : 
                f = "z = GJ_idiv_int8 (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_int8", GJ_idiv_int8_DEFN) ;
                break ;
            case  61 : 
                f = "z = GJ_idiv_int16 (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_int16", GJ_idiv_int16_DEFN) ;
                break ;
            case  62 : 
                f = "z = GJ_idiv_int32 (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_int32", GJ_idiv_int32_DEFN) ;
                break ;
            case  63 : 
                f = "z = GJ_idiv_int64 (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_int64", GJ_idiv_int64_DEFN) ;
                break ;
            case  64 : 
                f = "z = GJ_idiv_uint8 (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_uint8", GJ_idiv_uint8_DEFN) ;
                break ;
            case  65 : 
                f = "z = GJ_idiv_uint16 (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_uint16", GJ_idiv_uint16_DEFN) ;
                break ;
            case  66 : 
                f = "z = GJ_idiv_uint32 (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_uint32", GJ_idiv_uint32_DEFN) ;
                break ;
            case  67 : 
                f = "z = GJ_idiv_uint64 (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_idiv_uint64", GJ_idiv_uint64_DEFN) ;
                break ;

            // rdiv (complex floating-point)
            case  68 : 
                f = "z = GJ_FC32_div (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_FC64_div", GJ_FC64_div_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_FC32_div", GJ_FC32_div_DEFN) ;
                break ;
            case  69 : 
                f = "z = GJ_FC64_div (y,x)" ;
                GB_macrofy_defn (fp, 0, "GJ_FC64_div", GJ_FC64_div_DEFN) ;
                break ;

            // rdiv (real floating-point)
            case  70 : f = "z = (y) / (x)" ; break ;

            // gt
            case  71 : f = "z = ((x) > (y))" ; break ;

            // isgt
            case 144 : f = "z = (GB_Z_TYPE) ((x) > (y))" ; break ;

            // lt
            case  72 : f = "z = ((x) < (y))" ; break ;

            // islt
            case 145 : f = "z = (GB_Z_TYPE) ((x) < (y))" ; break ;

            // ge
            case  73 : f = "z = ((x) >= (y))" ; break ;

            // isge
            case 146 : f = "z = (GB_Z_TYPE) ((x) >= (y))" ; break ;

            // le
            case  74 : f = "z = ((x) <= (y))" ; break ;

            // isle
            case 147 : f = "z = (GB_Z_TYPE) ((x) <= (y))" ; break ;

            // bget
            case  75 : 
                f = "z = GJ_bitget_int8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitget_int8", GJ_bitget_int8_DEFN) ;
                break ;
            case  76 : 
                f = "z = GJ_bitget_int16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitget_int16", GJ_bitget_int16_DEFN) ;
                break ;
            case  77 : 
                f = "z = GJ_bitget_int32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitget_int32", GJ_bitget_int32_DEFN) ;
                break ;
            case  78 : 
                f = "z = GJ_bitget_int64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitget_int64", GJ_bitget_int64_DEFN) ;
                break ;
            case  79 : 
                f = "z = GJ_bitget_uint8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitget_uint8", GJ_bitget_uint8_DEFN) ;
                break ;
            case  80 : 
                f = "z = GJ_bitget_uint16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitget_uint16", GJ_bitget_uint16_DEFN) ;
                break ;
            case  81 : 
                f = "z = GJ_bitget_uint32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitget_uint32", GJ_bitget_uint32_DEFN) ;
                break ;
            case  82 : 
                f = "z = GJ_bitget_uint64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitget_uint64", GJ_bitget_uint64_DEFN) ;
                break ;

            // bset
            case  83 : 
                f = "z = GJ_bitset_int8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitset_int8", GJ_bitset_int8_DEFN) ;
                break ;
            case  84 : 
                f = "z = GJ_bitset_int16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitset_int16", GJ_bitset_int16_DEFN) ;
                break ;
            case  85 : 
                f = "z = GJ_bitset_int32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitset_int32", GJ_bitset_int32_DEFN) ;
                break ;
            case  86 : 
                f = "z = GJ_bitset_int64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitset_int64", GJ_bitset_int64_DEFN) ;
                break ;
            case  87 : 
                f = "z = GJ_bitset_uint8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitset_uint8", GJ_bitset_uint8_DEFN) ;
                break ;
            case  88 : 
                f = "z = GJ_bitset_uint16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitset_uint16", GJ_bitset_uint16_DEFN) ;
                break ;
            case  89 : 
                f = "z = GJ_bitset_uint32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitset_uint32", GJ_bitset_uint32_DEFN) ;
                break ;
            case  90 : 
                f = "z = GJ_bitset_uint64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitset_uint64", GJ_bitset_uint64_DEFN) ;
                break ;

            // bclr
            case  91 : 
                f = "z = GJ_bitclr_int8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitclr_int8", GJ_bitclr_int8_DEFN) ;
                break ;
            case  92 : 
                f = "z = GJ_bitclr_int16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitclr_int16", GJ_bitclr_int16_DEFN) ;
                break ;
            case  93 : 
                f = "z = GJ_bitclr_int32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitclr_int32", GJ_bitclr_int32_DEFN) ;
                break ;
            case  94 : 
                f = "z = GJ_bitclr_int64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitclr_int64", GJ_bitclr_int64_DEFN) ;
                break ;
            case  95 : 
                f = "z = GJ_bitclr_uint8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitclr_uint8", GJ_bitclr_uint8_DEFN) ;
                break ;
            case  96 : 
                f = "z = GJ_bitclr_uint16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitclr_uint16", GJ_bitclr_uint16_DEFN) ;
                break ;
            case  97 : 
                f = "z = GJ_bitclr_uint32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitclr_uint32", GJ_bitclr_uint32_DEFN) ;
                break ;
            case  98 : 
                f = "z = GJ_bitclr_uint64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitclr_uint64", GJ_bitclr_uint64_DEFN) ;
                break ;

            // bshift
            case  99 : 
                f = "z = GJ_bitshift_int8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitshift_int8", GJ_bitshift_int8_DEFN) ;
                break ;
            case 100 : 
                f = "z = GJ_bitshift_int16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitshift_int16", GJ_bitshift_int16_DEFN) ;
                break ;
            case 101 : 
                f = "z = GJ_bitshift_int32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitshift_int32", GJ_bitshift_int32_DEFN) ;
                break ;
            case 102 : 
                f = "z = GJ_bitshift_int64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitshift_int64", GJ_bitshift_int64_DEFN) ;
                break ;
            case 103 : 
                f = "z = GJ_bitshift_uint8 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitshift_uint8", GJ_bitshift_uint8_DEFN) ;
                break ;
            case 104 : 
                f = "z = GJ_bitshift_uint16 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitshift_uint16", GJ_bitshift_uint16_DEFN) ;
                break ;
            case 105 : 
                f = "z = GJ_bitshift_uint32 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitshift_uint32", GJ_bitshift_uint32_DEFN) ;
                break ;
            case 106 : 
                f = "z = GJ_bitshift_uint64 (x,y)" ;
                GB_macrofy_defn (fp, 0, "GJ_bitshift_uint64", GJ_bitshift_uint64_DEFN) ;
                break ;

            // pow (integer cases)
            case 107 : 
                f = "z = GJ_pow_int8 (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_cast_to_int8", GJ_cast_to_int8_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_pow_int8", GJ_pow_int8_DEFN) ;
                break ;
            case 108 : 
                f = "z = GJ_pow_int16 (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_cast_to_int16", GJ_cast_to_int16_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_pow_int16", GJ_pow_int16_DEFN) ;
                break ;
            case 109 : 
                f = "z = GJ_pow_int32 (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_cast_to_int32", GJ_cast_to_int32_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_pow_int32", GJ_pow_int32_DEFN) ;
                break ;
            case 110 : 
                f = "z = GJ_pow_int64 (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_cast_to_int32", GJ_cast_to_int64_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_pow_int64", GJ_pow_int64_DEFN) ;
                break ;
            case 111 : 
                f = "z = GJ_pow_uint8 (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_cast_to_uint8", GJ_cast_to_uint8_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_pow_uint8", GJ_pow_uint8_DEFN) ;
                break ;
            case 112 : 
                f = "z = GJ_pow_uint16 (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_cast_to_uint16", GJ_cast_to_uint16_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_pow_uint16", GJ_pow_uint16_DEFN) ;
                break ;
            case 113 : 
                f = "z = GJ_pow_uint32 (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_cast_to_uint32", GJ_cast_to_uint32_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_pow_uint32", GJ_pow_uint32_DEFN) ;
                break ;
            case 114 : 
                f = "z = GJ_pow_uint64 (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_cast_to_uint64", GJ_cast_to_uint64_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_pow_uint64", GJ_pow_uint64_DEFN) ;
                break ;

            // pow (float and double)
            case 115 : 
                f = "z = GJ_powf (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_powf", GJ_powf_DEFN) ;
                break ;
            case 116 : 
                f = "z = GJ_pow (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                break ;

            // pow (complex float and double)
            case 117 : 
                f = "z = GJ_FC32_pow (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_powf", GJ_powf_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_FC32_pow", GJ_FC32_pow_DEFN) ;
                break ;
            case 118 : 
                f = "z = GJ_FC64_pow (x, y)" ;
                GB_macrofy_defn (fp, 0, "GJ_pow", GJ_pow_DEFN) ;
                GB_macrofy_defn (fp, 0, "GJ_FC64_pow", GJ_FC64_pow_DEFN) ;
                break ;

            // atan2
            case 119 : f = "z = atan2f (x, y)" ; break ;
            case 120 : f = "z = atan2 (x, y)" ; break ;

            // hypot
            case 121 : f = "z = hypotf (x, y)" ; break ;
            case 122 : f = "z = hypot (x, y)" ; break ;

            // fmod
            case 123 : f = "z = fmodf (x, y)" ; break ;
            case 124 : f = "z = fmod (x, y)" ; break ;

            // remainder
            case 125 : f = "z = remainderf (x, y)" ; break ;
            case 126 : f = "z = remainder (x, y)" ; break ;

            // copysign
            case 127 : f = "z = copysignf (x, y)" ; break ;
            case 128 : f = "z = copysign (x, y)" ; break ;

            // ldexp
            case 129 : f = "z = ldexpf (x, y)" ; break ;
            case 130 : f = "z = ldexp (x, y)" ; break ;

            // cmplex
            case 131 : f = "z = GJ_CMPLX32 (x, y)" ; break ;
            case 132 : f = "z = GJ_CMPLX64 (x, y)" ; break ;

            // pair, real
            case 133 : f = "z = 1" ; break ;

            // pair, single complex
            case 148 : f = "z = GxB_CMPLXF (1,0)" ; break ;

            // pair, double complex
            case 149 : f = "z = GxB_CMPLX (1,0)" ; break ;

            //------------------------------------------------------------------
            // builtin positional ops
            //------------------------------------------------------------------

            // in a semiring:  cij += aik * bkj
            //      firsti is i, firstj is k, secondi k, secondj is j

            // in an ewise operation:  cij = aij + bij
            //      firsti is i, firstj is j, secondi i, secondj is j

            case 134 : f = "z = (i)"     ; break ;
            case 135 : f = "z = (k)"     ; break ;
            case 136 : f = "z = (j)"     ; break ;
            case 137 : f = "z = (i) + 1" ; break ;
            case 138 : f = "z = (k) + 1" ; break ;
            case 139 : f = "z = (j) + 1" ; break ;

            // for kron, all these ops are unique:
            case 150 : f = "z = (ix)"    ; break ;      // firsti
            case 151 : f = "z = (ix)+1"  ; break ;      // firsti1
            case 152 : f = "z = (jx)"    ; break ;      // firstj
            case 153 : f = "z = (jx)+1"  ; break ;      // firstj1
            case 154 : f = "z = (iy)"    ; break ;      // secondi
            case 155 : f = "z = (iy)+1"  ; break ;      // secondi1
            case 156 : f = "z = (jy)"    ; break ;      // secondj
            case 157 : f = "z = (jy)+1"  ; break ;      // secondj1

            //------------------------------------------------------------------
            // no-op: same as second operator
            //------------------------------------------------------------------

            default  : f = "z = y" ; break ;
        }

        //----------------------------------------------------------------------
        // create the macro
        //----------------------------------------------------------------------

        if (is_monoid_or_build)
        {
            // additive operator: no i,k,j parameters
            fprintf (fp, "#define %s(z,x,y) %s\n", macro_name, f) ;
            if (op->ztype == op->xtype)
            {
                if (g != NULL)
                { 
                    // create an update expression of the form z += y,
                    // but it differs for the CPU and CUDA JIT kernels
                    fprintf (fp, "#ifdef  GB_CUDA_KERNEL\n"
                                 "#define GB_UPDATE(z,y) %s\n"
                                 "#else\n"
                                 "#define GB_UPDATE(z,y) %s\n"
                                 "#endif\n", g, u) ;
                }
                else if (u != NULL)
                { 
                    // create an update expression of the form z += y
                    fprintf (fp, "#define GB_UPDATE(z,y) %s\n", u) ;
                }
                else
                { 
                    // create an update expression of the form z = z + y
                    fprintf (fp, "#define GB_UPDATE(z,y) %s(z,z,y)\n",
                        macro_name) ;
                }
            }
        }
        else if (is_kron)
        { 
            // operator for kronecker
            if (flipij)
            { 
                fprintf (fp, "#define %s(z,x,jx,ix,y,jy,iy) %s\n",
                    macro_name, f) ;
            }
            else
            { 
                fprintf (fp, "#define %s(z,x,ix,jx,y,iy,jy) %s\n",
                    macro_name, f) ;
            }
        }
        else if (flipxy)
        { 
            // flipped multiplicative or ewise operator
            fprintf (fp, "#define %s(z,y,x,j%s,i) %s\n", macro_name, karg, f) ;
        }
        else
        { 
            // unflipped multiplicative or ewise operator
            fprintf (fp, "#define %s(z,x,y,i%s,j) %s\n", macro_name, karg, f) ;
        }
    }

    //--------------------------------------------------------------------------
    // return the u, f, and g expressions
    //--------------------------------------------------------------------------

    if (u_handle != NULL) (*u_handle) = u ;
    if (f_handle != NULL) (*f_handle) = f ;
    if (g_handle != NULL) (*g_handle) = g ;
}