1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
//------------------------------------------------------------------------------
// GB_macrofy_monoid: build macros for a monoid
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB.h"
#include "jitifyer/GB_stringify.h"
void GB_macrofy_monoid // construct the macros for a monoid
(
FILE *fp, // File to write macros, assumed open already
// inputs:
bool C_iso, // true if C is iso
GrB_Monoid monoid, // monoid to macrofy
bool disable_terminal_condition, // if true, a builtin monoid is assumed
// to be non-terminal. For the (times, firstj, int64)
// semiring, times is normally a terminal monoid, but
// it's not worth exploiting in GrB_mxm.
// output:
const char **u_expression,
const char **g_expression
)
{
//--------------------------------------------------------------------------
// get the monoid
//--------------------------------------------------------------------------
GrB_BinaryOp op = monoid->op ;
const char *ztype_name = C_iso ? "void" : op->ztype->name ;
int zcode = C_iso ? 0 : op->ztype->code ;
size_t zsize = C_iso ? 0 : op->ztype->size ;
GB_Opcode opcode = C_iso ? 0 : op->opcode ;
if (C_iso)
{
opcode = GB_ANY_binop_code ;
zcode = 0 ;
}
else if (zcode == GB_BOOL_code)
{
// rename the monoid
opcode = GB_boolean_rename (opcode) ;
}
//--------------------------------------------------------------------------
// create macros for the additive operator
//--------------------------------------------------------------------------
int add_ecode ;
GB_enumify_binop (&add_ecode, opcode, zcode, false, false) ;
GB_macrofy_binop (fp, "GB_ADD", false, false, true, false, false,
add_ecode, C_iso, op, NULL, u_expression, g_expression) ;
//--------------------------------------------------------------------------
// create macros for the identity value
//--------------------------------------------------------------------------
bool has_byte ;
uint8_t byte ;
if (C_iso)
{
// no values computed (C is iso)
fprintf (fp, "#define GB_DECLARE_IDENTITY(z)\n") ;
fprintf (fp, "#define GB_DECLARE_IDENTITY_CONST(z)\n") ;
}
else
{
int id_ecode ;
GB_enumify_identity (&id_ecode, opcode, zcode) ;
if (id_ecode <= 28)
{
// built-in monoid: a simple assignment
const char *id_val = GB_macrofy_id (id_ecode, zsize,
&has_byte, &byte) ;
#define SLEN (256 + GxB_MAX_NAME_LEN)
char id [SLEN] ;
if (zcode == GB_FC32_code)
{
snprintf (id, SLEN, "%s z = GxB_CMPLXF (%s,0)",
ztype_name, id_val) ;
}
else if (zcode == GB_FC64_code)
{
snprintf (id, SLEN, "%s z = GxB_CMPLX (%s,0)",
ztype_name, id_val) ;
}
else
{
snprintf (id, SLEN, "%s z = %s", ztype_name, id_val) ;
}
fprintf (fp, "#define GB_DECLARE_IDENTITY(z) %s\n", id) ;
fprintf (fp, "#define GB_DECLARE_IDENTITY_CONST(z) const %s\n", id);
if (has_byte)
{
fprintf (fp, "#define GB_HAS_IDENTITY_BYTE 1\n") ;
fprintf (fp, "#define GB_IDENTITY_BYTE 0x%02x\n", (int) byte) ;
}
}
else
{
// user-defined monoid: all we have are the bytes
GB_macrofy_bytes (fp, "IDENTITY", "z",
ztype_name, (uint8_t *) (monoid->identity), zsize, true) ;
fprintf (fp, "#define GB_DECLARE_IDENTITY_CONST(z) "
"GB_DECLARE_IDENTITY(z)\n") ;
}
}
//--------------------------------------------------------------------------
// create macros for the terminal value and terminal conditions
//--------------------------------------------------------------------------
// GB_TERMINAL_CONDITION(z,zterminal) should return true if the value of z
// has reached its terminal value (zterminal), or false otherwise. If the
// monoid is not terminal, then the macro should always return false. The
// ANY monoid should always return true.
// GB_IF_TERMINAL_BREAK(z,zterminal) is a macro containing a full
// statement. If the monoid is never terminal, it becomes the empty
// statement. Otherwise, it checks the terminal condition and does a
// "break" if true.
// GB_DECLARE_TERMINAL_CONST(zterminal) declares the zterminal variable as
// const. It is empty if the monoid is not terminal.
bool monoid_is_terminal = false ;
int term_ecode ;
if (C_iso)
{
term_ecode = 18 ;
}
else
{
GB_enumify_terminal (&term_ecode, opcode, zcode) ;
}
bool is_any_monoid = (term_ecode == 18) ;
if (is_any_monoid || C_iso)
{
// ANY monoid is terminal but with no specific terminal value
fprintf (fp, "#define GB_IS_ANY_MONOID 1\n") ;
monoid_is_terminal = true ;
}
else if (monoid->terminal == NULL)
{
// monoid is not terminal (either built-in or user-defined)
monoid_is_terminal = false ;
}
else if (term_ecode <= 28)
{
// built-in terminal monoid: terminal value is a simple assignment.
// Its terminal condition can be ignored (for (times, firstj, int64),
// for example) if disable_terminal_condition is true, but in that case
// its terminal value must still be constructed for the query function.
monoid_is_terminal = !disable_terminal_condition ;
if (monoid_is_terminal)
{
fprintf (fp, "#define GB_MONOID_IS_TERMINAL 1\n") ;
}
// there are no built-in terminal monoids, except ANY, handled above
ASSERT (zcode != GB_FC32_code && zcode != GB_FC64_code) ;
const char *term_value = GB_macrofy_id (term_ecode, zsize, NULL, NULL) ;
fprintf (fp, "#define GB_DECLARE_TERMINAL_CONST(zterminal) "
"const %s zterminal = ", ztype_name) ;
fprintf (fp, "%s\n", term_value) ;
if (monoid_is_terminal)
{
fprintf (fp, "#define GB_TERMINAL_CONDITION(z,zterminal) "
"((z) == %s)\n", term_value) ;
fprintf (fp, "#define GB_IF_TERMINAL_BREAK(z,zterminal) "
"if ((z) == %s) break\n", term_value) ;
}
}
else
{
// user-defined terminal monoid
monoid_is_terminal = true ;
fprintf (fp, "#define GB_MONOID_IS_TERMINAL 1\n") ;
GB_macrofy_bytes (fp, "TERMINAL_CONST", "zterminal",
ztype_name, monoid->terminal, zsize, false) ;
fprintf (fp, "#define GB_TERMINAL_CONDITION(z,zterminal) "
" (memcmp (&(z), &(zterminal), %d) == 0)\n", (int) zsize) ;
fprintf (fp, "#define GB_IF_TERMINAL_BREAK(z,zterminal) "
" if (memcmp (&(z), &(zterminal), %d) == 0) break\n", (int) zsize) ;
}
//--------------------------------------------------------------------------
// determine the OpenMP #pragma omp reduction(redop:z) for this monoid
//--------------------------------------------------------------------------
// If not #define'd, omp/include/GB_monoid_shared_definitions.h defaults
// to no #pragma. The pragma is empty if the monoid is terminal, since
// the simd reduction does not work with a 'break' in the loop.
bool is_complex = (zcode == GB_FC32_code || zcode == GB_FC64_code) ;
if (is_complex)
{
fprintf (fp, "#define GB_Z_IS_COMPLEX 1\n") ;
}
if (!monoid_is_terminal && !is_complex)
{
char *redop = NULL ;
if (opcode == GB_PLUS_binop_code)
{
// #pragma omp simd reduction(+:z)
redop = "+" ;
}
else if (opcode == GB_LXOR_binop_code || opcode == GB_BXOR_binop_code)
{
// #pragma omp simd reduction(^:z)
redop = "^" ;
}
else if (opcode == GB_TIMES_binop_code)
{
// #pragma omp simd reduction(^:z)
redop = "*" ;
}
if (redop != NULL)
{
// The monoid has a "#pragma omp simd reduction(redop:z)" statement.
// There are other OpenMP reductions that could be exploited, but
// many are for terminal monoids (logical and bitwise AND, OR).
// The min/max reductions are not exploited because they are
// terminal monoids for integers. For floating-point, the NaN
// handling may differ, so they are not exploited here either.
fprintf (fp, "#define GB_PRAGMA_SIMD_REDUCTION_MONOID(z) "
"GB_PRAGMA_SIMD_REDUCTION (%s,z)\n", redop) ;
}
}
//--------------------------------------------------------------------------
// special cases
//--------------------------------------------------------------------------
bool is_integer = (zcode >= GB_INT8_code && zcode <= GB_UINT64_code) ;
bool is_fp_real = (zcode == GB_FP32_code || zcode == GB_FP64_code) ;
if (opcode == GB_PLUS_binop_code && zcode == GB_FC32_code)
{
// PLUS_FC32 monoid
fprintf (fp, "#define GB_IS_PLUS_FC32_MONOID 1\n") ;
}
else if (opcode == GB_PLUS_binop_code && zcode == GB_FC64_code)
{
// PLUS_FC64 monoid
fprintf (fp, "#define GB_IS_PLUS_FC64_MONOID 1\n") ;
}
else if (opcode == GB_MIN_binop_code && is_integer)
{
// IMIN monoid (min with any integer type)
fprintf (fp, "#define GB_IS_IMIN_MONOID 1\n") ;
}
else if (opcode == GB_MAX_binop_code && is_integer)
{
// IMAX monoid (max with any integer type)
fprintf (fp, "#define GB_IS_IMAX_MONOID 1\n") ;
}
else if (opcode == GB_MIN_binop_code && is_fp_real)
{
// FMIN monoid (min with a real floating-point type)
fprintf (fp, "#define GB_IS_FMIN_MONOID 1\n") ;
}
else if (opcode == GB_MAX_binop_code && is_fp_real)
{
// FMAX monoid (max with a real floating-point type)
fprintf (fp, "#define GB_IS_FMAX_MONOID 1\n") ;
}
// can ignore overflow in ztype when accumulating the result via the monoid
// zcode == 0: only when C is iso
bool ztype_ignore_overflow = (zcode == 0 ||
zcode == GB_INT64_code || zcode == GB_UINT64_code ||
zcode == GB_FP32_code || zcode == GB_FP64_code ||
zcode == GB_FC32_code || zcode == GB_FC64_code) ;
if (ztype_ignore_overflow && !is_any_monoid)
{
// if the monoid is ANY, this is set to 1 by
// monoid/include/GB_monoid_shared_definitions.h, so skip it here
fprintf (fp, "#define GB_Z_IGNORE_OVERFLOW 1\n") ;
}
//--------------------------------------------------------------------------
// create macros for atomics on the CPU
//--------------------------------------------------------------------------
fprintf (fp, "#define GB_Z_SIZE %d\n", (int) zsize) ;
fprintf (fp, "#define GB_Z_NBITS %d\n", 8 * (int) zsize) ;
// atomic write
bool has_atomic_write = false ;
char *ztype_atomic = NULL ;
if (zcode == 0)
{
// C is iso (any_pair symbolic semiring)
fprintf (fp, "#define GB_Z_ATOMIC_BITS 0\n") ;
}
else if (zsize == sizeof (uint8_t))
{
// int8_t, uint8_t, and 8-bit user-defined types
ztype_atomic = "uint8_t" ;
has_atomic_write = true ;
fprintf (fp, "#define GB_Z_ATOMIC_BITS 8\n") ;
}
else if (zsize == sizeof (uint16_t))
{
// int16_t, uint16_t, and 16-bit user-defined types
ztype_atomic = "uint16_t" ;
has_atomic_write = true ;
fprintf (fp, "#define GB_Z_ATOMIC_BITS 16\n") ;
}
else if (zsize == sizeof (uint32_t))
{
// int32_t, uint32_t, float, and 32-bit user-defined types
ztype_atomic = "uint32_t" ;
has_atomic_write = true ;
fprintf (fp, "#define GB_Z_ATOMIC_BITS 32\n") ;
}
else if (zsize == sizeof (uint64_t))
{
// int64_t, uint64_t, double, float complex, and 64-bit user types
ztype_atomic = "uint64_t" ;
has_atomic_write = true ;
fprintf (fp, "#define GB_Z_ATOMIC_BITS 64\n") ;
}
// atomic write for the ztype: if GB_Z_ATOMIC_BITS is defined, then
// GB_Z_HAS_ATOMIC_WRITE is #defined as 1 by
// omp/include/GB_kernel_shared_definitions.h
if (has_atomic_write && (zcode == GB_FC32_code || zcode == GB_UDT_code))
{
// user-defined types of size 1, 2, 4, or 8 bytes can be written
// atomically, but must use a pun with ztype_atomic. float complex
// should also ztype_atomic.
fprintf (fp, "#define GB_Z_ATOMIC_TYPE %s\n", ztype_atomic) ;
}
// OpenMP atomic update support
bool is_real = (zcode >= GB_BOOL_code && zcode <= GB_FP64_code) ;
bool has_atomic_update = false ;
int omp_atomic_version = 0 ;
switch (opcode)
{
case GB_ANY_binop_code :
// the ANY monoid is a special case. It is done with an atomic
// write, or no update at all. The atomic write can be done for
// float complex (64 bits) but not double complex (128 bits).
// The atomic update is identical: just an atomic write.
has_atomic_update = has_atomic_write ;
omp_atomic_version = is_real ? 2 : 0 ;
break ;
case GB_LAND_binop_code :
case GB_LOR_binop_code :
case GB_LXOR_binop_code :
case GB_BAND_binop_code :
case GB_BOR_binop_code :
case GB_BXOR_binop_code :
// OpenMP 4.0 atomic, not on MS Visual Studio
has_atomic_update = true ;
omp_atomic_version = 4 ;
break ;
case GB_BXNOR_binop_code :
case GB_EQ_binop_code : // LXNOR
case GB_MIN_binop_code :
case GB_MAX_binop_code :
// these monoids can be done via atomic compare/exchange,
// but not with an omp pragma
has_atomic_update = true ;
break ;
case GB_PLUS_binop_code :
// even complex can be done atomically
has_atomic_update = true ;
omp_atomic_version = 2 ;
break ;
case GB_TIMES_binop_code :
// real monoids can be done atomically, not double complex
has_atomic_update = is_real || (zcode == GB_FC32_code) ;
// only the real case has an omp pragma
omp_atomic_version = is_real ? 2 : 0 ;
break ;
default :
// all other monoids, including user-defined, can be done atomically
// via compare-and-swap, if z has size 1, 2, 4, or 8 bytes.
// Otherwise, they must be done in a critical section.
has_atomic_update = has_atomic_write ;
omp_atomic_version = 0 ;
}
if (has_atomic_update)
{
// the monoid can be done atomically
fprintf (fp, "#define GB_Z_HAS_ATOMIC_UPDATE 1\n") ;
if (omp_atomic_version == 4)
{
// OpenMP 4.0 has an omp pragram but not OpenMP 2.0.
fprintf (fp, "#define GB_Z_HAS_OMP_ATOMIC_UPDATE "
"(!GB_COMPILER_MSC)\n") ;
}
else if (omp_atomic_version == 2)
{
// this update has an omp pragma
fprintf (fp, "#define GB_Z_HAS_OMP_ATOMIC_UPDATE 1\n") ;
}
}
//--------------------------------------------------------------------------
// create macros for the atomic CUDA operator, if available
//--------------------------------------------------------------------------
const char *a = NULL, *cuda_type = NULL ;
bool user_monoid_atomically = false ;
GB_enumify_cuda_atomic (&a, &user_monoid_atomically, &cuda_type,
monoid, opcode, zsize, zcode) ;
if (monoid == NULL || zcode == 0)
{
// nothing to do: C is iso-valued. For GrB_mxm only.
;
}
else if (user_monoid_atomically)
{
// CUDA atomic for a user monoid
fprintf (fp, "#define GB_Z_HAS_CUDA_ATOMIC_USER 1\n") ;
fprintf (fp, "#define GB_Z_CUDA_ATOMIC_TYPE %s\n", cuda_type) ;
}
else if (a == NULL)
{
// no CUDA atomics for this monoid
;
}
else
{
// CUDA atomic available for a built-in monoid
fprintf (fp, "#define GB_Z_HAS_CUDA_ATOMIC_BUILTIN 1\n") ;
fprintf (fp, "#define GB_Z_CUDA_ATOMIC %s\n", a) ;
fprintf (fp, "#define GB_Z_CUDA_ATOMIC_TYPE %s\n", cuda_type) ;
}
}
|