1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
//------------------------------------------------------------------------------
// GB_macrofy_mxm: construct all macros for a semiring
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#include "GB.h"
#include "jitifyer/GB_stringify.h"
//------------------------------------------------------------------------------
// GB_macrofy_mxm: create all macros for GrB_mxm
//------------------------------------------------------------------------------
void GB_macrofy_mxm // construct all macros for GrB_mxm
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
GrB_Semiring semiring, // the semiring to macrofy
GrB_Type ctype,
GrB_Type atype,
GrB_Type btype
)
{
//--------------------------------------------------------------------------
// extract the semiring method_code
//--------------------------------------------------------------------------
// C, M, A, B: 32/64 (3 hex digits)
bool Cp_is_32 = GB_RSHIFT (method_code, 63, 1) ;
bool Cj_is_32 = GB_RSHIFT (method_code, 62, 1) ;
bool Ci_is_32 = GB_RSHIFT (method_code, 61, 1) ;
bool Mp_is_32 = GB_RSHIFT (method_code, 60, 1) ;
bool Mj_is_32 = GB_RSHIFT (method_code, 59, 1) ;
bool Mi_is_32 = GB_RSHIFT (method_code, 58, 1) ;
bool Ap_is_32 = GB_RSHIFT (method_code, 57, 1) ;
bool Aj_is_32 = GB_RSHIFT (method_code, 56, 1) ;
bool Ai_is_32 = GB_RSHIFT (method_code, 55, 1) ;
bool Bp_is_32 = GB_RSHIFT (method_code, 54, 1) ;
bool Bj_is_32 = GB_RSHIFT (method_code, 53, 1) ;
bool Bi_is_32 = GB_RSHIFT (method_code, 52, 1) ;
// monoid (4 bits, 1 hex digit)
// int add_code = GB_RSHIFT (method_code, 48, 5) ;
// C in, A, B iso-valued and flipxy (one hex digit)
bool C_in_iso = GB_RSHIFT (method_code, 47, 1) ;
bool A_iso = GB_RSHIFT (method_code, 46, 1) ;
bool B_iso = GB_RSHIFT (method_code, 45, 1) ;
bool flipxy = GB_RSHIFT (method_code, 44, 1) ;
// multiplier (5 hex digits)
// 2 bits unused here (42 and 43)
// int mult_code = GB_RSHIFT (method_code, 36, 6) ;
int zcode = GB_RSHIFT (method_code, 32, 4) ; // if 0: C is iso
int xcode = GB_RSHIFT (method_code, 28, 4) ; // if 0: ignored
int ycode = GB_RSHIFT (method_code, 24, 4) ; // if 0: ignored
// mask (one hex digit)
int mask_ecode = GB_RSHIFT (method_code, 20, 4) ;
// types of C, A, and B (3 hex digits)
int ccode = GB_RSHIFT (method_code, 16, 4) ; // if 0: C is iso
int acode = GB_RSHIFT (method_code, 12, 4) ; // if 0: A is pattern
int bcode = GB_RSHIFT (method_code, 8, 4) ; // if 0: B is pattern
// formats of C, M, A, and B (2 hex digits)
int csparsity = GB_RSHIFT (method_code, 6, 2) ;
int msparsity = GB_RSHIFT (method_code, 4, 2) ;
int asparsity = GB_RSHIFT (method_code, 2, 2) ;
int bsparsity = GB_RSHIFT (method_code, 0, 2) ;
//--------------------------------------------------------------------------
// construct the semiring name
//--------------------------------------------------------------------------
GrB_Monoid monoid = semiring->add ;
GrB_BinaryOp mult = semiring->multiply ;
GrB_BinaryOp addop = monoid->op ;
GB_Opcode mult_opcode = mult->opcode ;
GB_Opcode add_opcode = addop->opcode ;
bool C_iso = (ccode == 0) ;
if (C_iso)
{
// C is iso; no operators are used
add_opcode = GB_ANY_binop_code ;
mult_opcode = GB_PAIR_binop_code ;
xcode = 0 ;
ycode = 0 ;
zcode = 0 ;
fprintf (fp, "// semiring: symbolic only (C is iso)\n") ;
}
else
{
// general case
fprintf (fp, "// semiring: (%s, %s%s, %s)\n",
addop->name, mult->name, flipxy ? " (flipped)" : "",
mult->xtype->name) ;
}
if (xcode == GB_BOOL_code) // && (ycode == GB_BOOL_code)
{
// rename the multiplicative operator
mult_opcode = GB_boolean_rename (mult_opcode) ;
}
//--------------------------------------------------------------------------
// construct the typedefs
//--------------------------------------------------------------------------
GrB_Type xtype = (xcode == 0) ? NULL : mult->xtype ;
GrB_Type ytype = (ycode == 0) ? NULL : mult->ytype ;
GrB_Type ztype = (zcode == 0) ? NULL : mult->ztype ;
if (!C_iso)
{
GB_macrofy_typedefs (fp,
(ccode == 0) ? NULL : ctype,
(acode == 0) ? NULL : atype,
(bcode == 0) ? NULL : btype,
xtype, ytype, ztype) ;
}
//--------------------------------------------------------------------------
// construct the monoid macros
//--------------------------------------------------------------------------
// turn off terminal condition for builtin monoids coupled with positional
// multiply operators
bool is_positional = GB_IS_BUILTIN_BINOP_CODE_POSITIONAL (mult_opcode) ;
fprintf (fp, "\n// monoid:\n") ;
const char *u_expr, *g_expr ;
GB_macrofy_type (fp, "Z", "_", (zcode == 0) ? "GB_void" : ztype->name) ;
GB_macrofy_monoid (fp, C_iso, monoid, is_positional, &u_expr, &g_expr) ;
//--------------------------------------------------------------------------
// construct macros for the multiply operator
//--------------------------------------------------------------------------
int mult_ecode ;
GB_enumify_binop (&mult_ecode, mult_opcode, xcode, true, false) ;
fprintf (fp, "\n// multiplicative operator%s:\n",
flipxy ? " (flipped)" : "") ;
const char *f_expr ;
GB_macrofy_type (fp, "X", "_", (xcode == 0) ? "GB_void" : xtype->name) ;
GB_macrofy_type (fp, "Y", "_", (ycode == 0) ? "GB_void" : ytype->name) ;
GB_macrofy_binop (fp, "GB_MULT", false, flipxy, false, false, false,
mult_ecode, C_iso, mult, &f_expr, NULL, NULL) ;
//--------------------------------------------------------------------------
// multiply-add operator
//--------------------------------------------------------------------------
fprintf (fp, "\n// multiply-add operator:\n") ;
bool is_bool = (zcode == GB_BOOL_code) ;
bool is_float = (zcode == GB_FP32_code) ;
bool is_double = (zcode == GB_FP64_code) ;
bool is_first = (mult_opcode == GB_FIRST_binop_code) ;
bool is_second = (mult_opcode == GB_SECOND_binop_code) ;
bool is_pair = (mult_opcode == GB_PAIR_binop_code) ;
bool is_user_monoid = (add_opcode == GB_USER_binop_code) ;
if (C_iso)
{
//----------------------------------------------------------------------
// ANY_PAIR_BOOL semiring: nothing to do
//----------------------------------------------------------------------
fprintf (fp, "#define GB_MULTADD(z,x,y,i,k,j)\n") ;
}
else if (u_expr != NULL && f_expr != NULL && !is_user_monoid &&
(is_float || is_double || is_bool || is_first || is_second || is_pair
|| is_positional))
{
//----------------------------------------------------------------------
// create a fused multiply-add operator
//----------------------------------------------------------------------
// Fusing operators can only be done if it avoids ANSI C integer
// promotion rules.
// float and double do not get promoted.
// bool is OK since promotion of the result (0 or 1) to int is safe.
// first and second are OK since no promotion occurs.
// positional operators are OK too.
// Since GB_MULT is not used, the fused GB_MULTADD must handle flipxy.
if (g_expr == NULL)
{
// the CPU and GPU use the same macro
GB_macrofy_multadd (fp, u_expr, f_expr, flipxy) ;
}
else
{
// the CPU uses u_expr, and GPU uses g_expr
fprintf (fp, "#ifdef GB_CUDA_KERNEL\n") ;
GB_macrofy_multadd (fp, g_expr, f_expr, flipxy) ;
fprintf (fp, "#else\n") ;
GB_macrofy_multadd (fp, u_expr, f_expr, flipxy) ;
fprintf (fp, "#endif\n") ;
}
}
else
{
//----------------------------------------------------------------------
// use a temporary variable for multiply-add
//----------------------------------------------------------------------
// All user-defined operators use this method. Built-in operators on
// integers must use a temporary variable to avoid ANSI C integer
// promotion. Complex operators may use macros, so they use
// temporaries as well. GB_MULT handles flipxy.
fprintf (fp,
"#define GB_MULTADD(z,x,y,i,k,j) \\\n"
"{ \\\n"
" GB_Z_TYPE x_op_y ; \\\n"
" GB_MULT (x_op_y, x,y,i,k,j) ; \\\n"
" GB_UPDATE (z, x_op_y) ; \\\n"
"}\n") ;
}
//--------------------------------------------------------------------------
// special case semirings
//--------------------------------------------------------------------------
fprintf (fp, "\n// special cases:\n") ;
if (C_iso)
{
// ANY_PAIR_* (C is iso in this case, type is BOOL)
fprintf (fp, "#define GB_IS_ANY_PAIR_SEMIRING 1\n") ;
}
else if (mult_opcode == GB_PAIR_binop_code)
{
//----------------------------------------------------------------------
// ANY_PAIR, PLUS_PAIR, and related semirings
//----------------------------------------------------------------------
bool is_plus = (add_opcode == GB_PLUS_binop_code) ;
if (is_plus && (zcode >= GB_INT8_code && zcode <= GB_FP64_code))
{
// PLUS_PAIR_REAL semiring
fprintf (fp, "#define GB_IS_PLUS_PAIR_REAL_SEMIRING 1\n") ;
switch (zcode)
{
case GB_INT8_code :
case GB_UINT8_code :
fprintf (fp, "#define GB_IS_PLUS_PAIR_8_SEMIRING 1\n") ;
break ;
case GB_INT16_code :
case GB_UINT16_code :
fprintf (fp, "#define GB_IS_PLUS_PAIR_16_SEMIRING 1\n") ;
break ;
case GB_INT32_code :
case GB_UINT32_code :
fprintf (fp, "#define GB_IS_PLUS_PAIR_32_SEMIRING 1\n") ;
break ;
case GB_INT64_code :
case GB_UINT64_code :
case GB_FP32_code :
case GB_FP64_code :
fprintf (fp, "#define GB_IS_PLUS_PAIR_BIG_SEMIRING 1\n") ;
break ;
default:;
}
}
else if (add_opcode == GB_LXOR_binop_code)
{
// semiring is lxor_pair_bool
fprintf (fp, "#define GB_IS_LXOR_PAIR_SEMIRING 1\n") ;
}
}
else if (mult_opcode == GB_FIRSTJ_binop_code
|| mult_opcode == GB_FIRSTJ1_binop_code
|| mult_opcode == GB_SECONDI_binop_code
|| mult_opcode == GB_SECONDI1_binop_code)
{
//----------------------------------------------------------------------
// MIN_FIRSTJ and MAX_FIRSTJ
//----------------------------------------------------------------------
if (add_opcode == GB_MIN_binop_code)
{
// semiring is min_firstj or min_firstj1
fprintf (fp, "#define GB_IS_MIN_FIRSTJ_SEMIRING 1\n") ;
}
else if (add_opcode == GB_MAX_binop_code)
{
// semiring is max_firstj or max_firstj1
fprintf (fp, "#define GB_IS_MAX_FIRSTJ_SEMIRING 1\n") ;
}
}
else if (add_opcode == GB_PLUS_binop_code &&
mult_opcode == GB_TIMES_binop_code &&
(zcode == GB_FP32_code || zcode == GB_FP64_code))
{
//----------------------------------------------------------------------
// semiring is PLUS_TIMES_FP32 or PLUS_TIMES_FP64
//----------------------------------------------------------------------
// future:: try AVX acceleration on more semirings
fprintf (fp, "#define GB_SEMIRING_HAS_AVX_IMPLEMENTATION 1\n") ;
}
//--------------------------------------------------------------------------
// special case multiply ops
//--------------------------------------------------------------------------
switch (mult_opcode)
{
case GB_PAIR_binop_code :
if (!is_user_monoid)
{
fprintf (fp, "#define GB_IS_PAIR_MULTIPLIER 1\n") ;
if (zcode == GB_FC32_code)
{
fprintf (fp, "#define GB_PAIR_ONE GxB_CMPLXF (1,0)\n") ;
}
else if (zcode == GB_FC64_code)
{
fprintf (fp, "#define GB_PAIR_ONE GxB_CMPLX (1,0)\n") ;
}
}
break ;
case GB_FIRSTI1_binop_code :
fprintf (fp, "#define GB_OFFSET 1\n") ;
case GB_FIRSTI_binop_code :
fprintf (fp, "#define GB_IS_FIRSTI_MULTIPLIER 1\n") ;
break ;
case GB_FIRSTJ1_binop_code :
case GB_SECONDI1_binop_code :
fprintf (fp, "#define GB_OFFSET 1\n") ;
case GB_FIRSTJ_binop_code :
case GB_SECONDI_binop_code :
fprintf (fp, "#define GB_IS_FIRSTJ_MULTIPLIER 1\n") ;
break ;
case GB_SECONDJ1_binop_code :
fprintf (fp, "\n#define GB_OFFSET 1\n") ;
case GB_SECONDJ_binop_code :
fprintf (fp, "#define GB_IS_SECONDJ_MULTIPLIER 1\n") ;
break ;
default: ;
}
//--------------------------------------------------------------------------
// macros for the C matrix
//--------------------------------------------------------------------------
GB_macrofy_output (fp, "c", "C", "C", ctype, ztype, csparsity, C_iso,
C_in_iso, Cp_is_32, Cj_is_32, Ci_is_32) ;
//--------------------------------------------------------------------------
// construct the macros to access the mask (if any), and its name
//--------------------------------------------------------------------------
GB_macrofy_mask (fp, mask_ecode, "M", msparsity,
Mp_is_32, Mj_is_32, Mi_is_32) ;
//--------------------------------------------------------------------------
// construct the macros for A and B
//--------------------------------------------------------------------------
// if flipxy false: A is typecasted to x, and B is typecasted to y.
// if flipxy true: A is typecasted to y, and B is typecasted to x.
GB_macrofy_input (fp, "a", "A", "A", true,
flipxy ? ytype : xtype,
atype, asparsity, acode, A_iso, -1, Ap_is_32, Aj_is_32, Ai_is_32) ;
GB_macrofy_input (fp, "b", "B", "B", true,
flipxy ? xtype : ytype,
btype, bsparsity, bcode, B_iso, -1, Bp_is_32, Bj_is_32, Bi_is_32) ;
//--------------------------------------------------------------------------
// include the final default definitions
//--------------------------------------------------------------------------
fprintf (fp, "\n#include \"include/GB_mxm_shared_definitions.h\"\n") ;
}
|