1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
|
//------------------------------------------------------------------------------
// GB_stringify.h: encodify / enumify / macrofy and *_jit definitions
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
#ifndef GB_STRINGIFY_H
#define GB_STRINGIFY_H
#include "binaryop/GB_binop.h"
#include "jitifyer/GB_jitifyer.h"
#include "callback/include/GB_callback.h"
//------------------------------------------------------------------------------
// print kernel preface
//------------------------------------------------------------------------------
void GB_macrofy_preface
(
FILE *fp, // target file to write, already open
char *kernel_name, // name of the kernel
char *C_preface, // user-provided preface for CPU JIT kernels
char *CUDA_preface, // user-provided preface for CUDA JIT kernels
GB_jit_kcode kcode
) ;
//------------------------------------------------------------------------------
// GB_macrofy_name: create the kernel name
//------------------------------------------------------------------------------
#define GB_KLEN (100 + 2*GxB_MAX_NAME_LEN)
void GB_macrofy_name
(
// output:
char *kernel_name, // string of length GB_KLEN
// input
const char *name_space, // namespace for the kernel_name
const char *kname, // kname for the kernel_name
int method_code_digits, // # of hexadecimal digits printed
uint64_t method_code, // enumify'd code of the kernel
const char *suffix // suffix for the kernel_name (NULL if none)
) ;
GrB_Info GB_demacrofy_name
(
// input/output:
char *kernel_name, // string of length GB_KLEN; NUL's are inserted
// to demarcate each part of the kernel_name.
// output
char **name_space, // namespace for the kernel_name
char **kname, // kname for the kernel_name
uint64_t *method_code, // enumify'd code of the kernel
char **suffix // suffix for the kernel_name (NULL if none)
) ;
//------------------------------------------------------------------------------
// GrB_reduce
//------------------------------------------------------------------------------
uint64_t GB_encodify_reduce // encode a GrB_reduce problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
GrB_Monoid monoid, // the monoid to enumify
GrB_Matrix A // input matrix to reduce
) ;
void GB_enumify_reduce // enumerate a GrB_reduce problem
(
// output:
uint64_t *method_code, // unique encoding of the entire problem
// input:
GrB_Monoid monoid, // the monoid to enumify
GrB_Matrix A // input matrix to monoid
) ;
void GB_macrofy_reduce // construct all macros for GrB_reduce to scalar
(
FILE *fp, // target file to write, already open
// input:
uint64_t rcode, // encoded problem
GrB_Monoid monoid, // monoid to macrofy
GrB_Type atype // type of the A matrix to reduce
) ;
GrB_Info GB_reduce_to_scalar_jit // z = reduce_to_scalar (A) via the JIT
(
// output:
void *z, // result
// input:
const GrB_Monoid monoid, // monoid to do the reduction
const GrB_Matrix A, // matrix to reduce
GB_void *restrict W, // workspace
bool *restrict F, // workspace
int ntasks, // # of tasks to use
int nthreads // # of threads to use
) ;
//------------------------------------------------------------------------------
// GrB_eWiseAdd, GrB_eWiseMult, GxB_eWiseUnion
//------------------------------------------------------------------------------
uint64_t GB_encodify_ewise // encode an ewise problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
const bool is_eWiseMult, // if true, method is emult
// C matrix:
const bool C_iso,
const bool C_in_iso,
const int C_sparsity,
const GrB_Type ctype,
const bool Cp_is_32,
const bool Cj_is_32,
const bool Ci_is_32,
// M matrix:
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
// operator:
const GrB_BinaryOp binaryop,
const bool flipij,
const bool flipxy,
// A and B:
const GrB_Matrix A, // NULL for apply bind1st
const GrB_Matrix B // NULL for apply bind2nd
) ;
void GB_enumify_ewise // enumerate a GrB_eWise problem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// input:
bool is_eWiseMult, // if true, method is emult
bool is_eWiseUnion, // if true, method is eWiseUnion
bool is_kron, // if true, method is kron
bool can_copy_to_C, // if true C(i,j)=A(i,j) can bypass the op
// C matrix:
bool C_iso, // if true, C is iso on output
bool C_in_iso, // if true, C is iso on input
int C_sparsity, // sparse, hyper, bitmap, or full
GrB_Type ctype, // C=((ctype) T) is the final typecast
bool Cp_is_32, // if true, Cp is 32-bit; else 64-bit
bool Cj_is_32, // if true, Ch is 32-bit; else 64-bit
bool Ci_is_32, // if true, Ci is 32-bit; else 64-bit
// M matrix:
GrB_Matrix M, // may be NULL
bool Mask_struct, // mask is structural
bool Mask_comp, // mask is complemented
// operator:
GrB_BinaryOp binaryop, // the binary operator to enumify
bool flipij, // multiplier is: op(a,b,i,j) or op(a,b,j,i)
bool flipxy, // multiplier is: op(a,b,i,j) or op(b,a,j,i)
// A and B:
GrB_Matrix A, // NULL for unary apply with binop, bind 1st
GrB_Matrix B // NULL for unary apply with binop, bind 2nd
) ;
void GB_macrofy_ewise // construct all macros for GrB_eWise
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
uint64_t kcode,
GrB_BinaryOp binaryop, // binaryop to macrofy
GrB_Type ctype,
GrB_Type atype, // NULL for apply bind1st
GrB_Type btype // NULL for apply bind2nd
) ;
GrB_Info GB_add_jit // C=A+B, C<#M>=A+B, add, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const int C_sparsity,
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_BinaryOp binaryop,
const bool flipij,
const GrB_Matrix A,
const GrB_Matrix B,
const bool Ch_is_Mh,
const int64_t *restrict C_to_M,
const int64_t *restrict C_to_A,
const int64_t *restrict C_to_B,
const GB_task_struct *restrict TaskList,
const int C_ntasks,
const int C_nthreads,
const int64_t *restrict M_ek_slicing,
const int M_nthreads,
const int M_ntasks,
const int64_t *restrict A_ek_slicing,
const int A_nthreads,
const int A_ntasks,
const int64_t *restrict B_ek_slicing,
const int B_nthreads,
const int B_ntasks
) ;
GrB_Info GB_union_jit // C=A+B, C<#M>=A+B, eWiseUnion, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const int C_sparsity,
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_BinaryOp binaryop,
const bool flipij,
const GrB_Matrix A,
const GrB_Matrix B,
const GB_void *alpha_scalar_in,
const GB_void *beta_scalar_in,
const bool Ch_is_Mh,
const int64_t *restrict C_to_M,
const int64_t *restrict C_to_A,
const int64_t *restrict C_to_B,
const GB_task_struct *restrict TaskList,
const int C_ntasks,
const int C_nthreads,
const int64_t *restrict M_ek_slicing,
const int M_nthreads,
const int M_ntasks,
const int64_t *restrict A_ek_slicing,
const int A_nthreads,
const int A_ntasks,
const int64_t *restrict B_ek_slicing,
const int B_nthreads,
const int B_ntasks
) ;
GrB_Info GB_emult_08_jit // C<#M>=A.*B, emult_08, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const int C_sparsity,
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_BinaryOp binaryop,
const bool flipij,
const GrB_Matrix A,
const GrB_Matrix B,
const int64_t *restrict C_to_M,
const int64_t *restrict C_to_A,
const int64_t *restrict C_to_B,
const GB_task_struct *restrict TaskList,
const int C_ntasks,
const int C_nthreads
) ;
GrB_Info GB_emult_02_jit // C<#M>=A.*B, emult_02, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const int C_sparsity,
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_BinaryOp binaryop,
const bool flipij,
const GrB_Matrix A,
const GrB_Matrix B,
const uint64_t *restrict Cp_kfirst,
const int64_t *A_ek_slicing,
const int A_ntasks,
const int A_nthreads
) ;
GrB_Info GB_emult_03_jit // C<#M>=A.*B, emult_03, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const int C_sparsity,
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_BinaryOp binaryop,
const bool flipij,
const GrB_Matrix A,
const GrB_Matrix B,
const uint64_t *restrict Cp_kfirst,
const int64_t *B_ek_slicing,
const int B_ntasks,
const int B_nthreads
) ;
GrB_Info GB_emult_04_jit // C<M>=A.*B, emult_04, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const int C_sparsity,
const GrB_Matrix M,
const bool Mask_struct,
const GrB_BinaryOp binaryop,
const bool flipij,
const GrB_Matrix A,
const GrB_Matrix B,
const uint64_t *restrict Cp_kfirst,
const int64_t *M_ek_slicing,
const int M_ntasks,
const int M_nthreads
) ;
GrB_Info GB_emult_bitmap_jit // C<#M>=A.*B, emult_bitmap, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_BinaryOp binaryop,
const bool flipij,
const GrB_Matrix A,
const GrB_Matrix B,
const int64_t *M_ek_slicing,
const int M_ntasks,
const int M_nthreads,
const int C_nthreads
) ;
GrB_Info GB_ewise_fulla_jit // C+=A+B via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_BinaryOp binaryop,
const GrB_Matrix A,
const GrB_Matrix B,
const int nthreads
) ;
GrB_Info GB_ewise_fulln_jit // C=A+B via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_BinaryOp binaryop,
const GrB_Matrix A,
const GrB_Matrix B,
const int nthreads
) ;
GrB_Info GB_rowscale_jit // C=D*B, rowscale, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix D,
const GrB_Matrix B,
const GrB_BinaryOp binaryop,
const bool flipxy,
const int nthreads
) ;
GrB_Info GB_colscale_jit // C=A*D, colscale, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix A,
const GrB_Matrix D,
const GrB_BinaryOp binaryop,
const bool flipxy,
const int64_t *restrict A_ek_slicing,
const int A_ntasks,
const int A_nthreads
) ;
//------------------------------------------------------------------------------
// GrB_mxm
//------------------------------------------------------------------------------
uint64_t GB_encodify_mxm // encode a GrB_mxm problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
// C matrix:
const bool C_iso,
const bool C_in_iso,
const int C_sparsity,
const GrB_Type ctype,
bool Cp_is_32, // if true, C->p is 32-bit; else 64
bool Cj_is_32, // if true, C->h is 32-bit; else 64
bool Ci_is_32, // if true, C->i is 32-bit; else 64
// M matrix:
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
// semiring:
const GrB_Semiring semiring,
const bool flipxy,
// A and B:
const GrB_Matrix A,
const GrB_Matrix B
) ;
void GB_enumify_mxm // enumerate a GrB_mxm problem
(
// output: // future:: may need to become 2 x uint64
uint64_t *method_code, // unique encoding of the entire semiring
// input:
// C matrix:
bool C_iso, // C output iso: if true, semiring is ANY_PAIR_BOOL
bool C_in_iso, // C input iso status
int C_sparsity, // sparse, hyper, bitmap, or full
GrB_Type ctype, // C=((ctype) T) is the final typecast
bool Cp_is_32, // if true, C->p is 32-bit; else 64
bool Cj_is_32, // if true, C->h is 32-bit; else 64
bool Ci_is_32, // if true, C->i is 32-bit; else 64
// M matrix:
GrB_Matrix M, // may be NULL
bool Mask_struct, // mask is structural
bool Mask_comp, // mask is complemented
// semiring:
GrB_Semiring semiring, // the semiring to enumify
bool flipxy, // multiplier is: mult(a,b) or mult(b,a)
// A and B:
GrB_Matrix A,
GrB_Matrix B
) ;
void GB_macrofy_mxm // construct all macros for GrB_mxm
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
GrB_Semiring semiring, // the semiring to macrofy
GrB_Type ctype,
GrB_Type atype,
GrB_Type btype
) ;
void GB_macrofy_multadd
(
FILE *fp,
const char *update_expression, // has the form "z = f(z,y)"
const char *multiply_expression, // has the form "z = mult(x,y)"
bool flipxy
) ;
GrB_Info GB_AxB_saxpy3_jit // C<M>=A*B, saxpy3, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix M,
const bool Mask_comp,
const bool Mask_struct,
const bool M_in_place,
const GrB_Matrix A,
const GrB_Matrix B,
const GrB_Semiring semiring,
const bool flipxy,
void *SaxpyTasks,
const int ntasks,
const int nfine,
const int nthreads,
const int do_sort, // if nonzero, try to sort in saxpy3
GB_Werk Werk
) ;
GrB_Info GB_AxB_saxpy4_jit // C+=A*B, saxpy4 method, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix A,
const GrB_Matrix B,
const GrB_Semiring semiring,
const bool flipxy,
const int ntasks,
const int nthreads,
const int nfine_tasks_per_vector,
const bool use_coarse_tasks,
const bool use_atomics,
const int64_t *A_slice,
const int64_t *H_slice,
GB_void *restrict Wcx
) ;
GrB_Info GB_AxB_saxpy5_jit // C+=A*B, saxpy5 method, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix A,
const GrB_Matrix B,
const GrB_Semiring semiring,
const bool flipxy,
const int ntasks,
const int nthreads,
const int64_t *B_slice
) ;
GrB_Info GB_AxB_saxbit_jit // C<M>=A*B, saxbit, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix M,
const bool Mask_comp,
const bool Mask_struct,
const GrB_Matrix A,
const GrB_Matrix B,
const GrB_Semiring semiring,
const bool flipxy,
const int ntasks,
const int nthreads,
const int nfine_tasks_per_vector,
const bool use_coarse_tasks,
const bool use_atomics,
const int64_t *restrict M_ek_slicing,
const int M_nthreads,
const int M_ntasks,
const int64_t *restrict A_slice,
const int64_t *restrict H_slice,
GB_void *restrict Wcx,
int8_t *restrict Wf
) ;
GrB_Info GB_AxB_dot2_jit // C<M>=A'*B, dot2 method, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix M,
const bool Mask_comp,
const bool Mask_struct,
const GrB_Matrix A,
const int64_t *restrict A_slice,
const GrB_Matrix B,
const int64_t *restrict B_slice,
const GrB_Semiring semiring,
const bool flipxy,
const int nthreads,
const int naslice,
const int nbslice
) ;
GrB_Info GB_AxB_dot2n_jit // C<M>=A*B, dot2n method, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const GrB_Matrix M,
const bool Mask_comp,
const bool Mask_struct,
const GrB_Matrix A,
const int64_t *restrict A_slice,
const GrB_Matrix B,
const int64_t *restrict B_slice,
const GrB_Semiring semiring,
const bool flipxy,
const int nthreads,
const int naslice,
const int nbslice
) ;
GrB_Info GB_AxB_dot3_jit // C<M>=A'B, dot3, via the JIT
(
// input/output:
GrB_Matrix C, // never iso for this kernel
// input:
const GrB_Matrix M, const bool Mask_struct,
const GrB_Matrix A,
const GrB_Matrix B,
const GrB_Semiring semiring,
const bool flipxy,
const GB_task_struct *restrict TaskList,
const int ntasks,
const int nthreads
) ;
GrB_Info GB_AxB_dot4_jit // C+=A'*B, dot4 method, via the JIT
(
// input/output:
GrB_Matrix C,
// input:
const bool C_in_iso,
const GrB_Matrix A,
const GrB_Matrix B,
const GrB_Semiring semiring,
const bool flipxy,
const int64_t *restrict A_slice,
const int64_t *restrict B_slice,
const int naslice,
const int nbslice,
const int nthreads,
GB_Werk Werk
) ;
//------------------------------------------------------------------------------
// enumify and macrofy the mask matrix M
//------------------------------------------------------------------------------
void GB_enumify_mask // return enum to define mask macros
(
// output:
int *mask_ecode, // enumified mask
// input
const GB_Type_code mcode, // typecode of the mask matrix M,
// or 0 if M is not present
bool Mask_struct, // true if M structural, false if valued
bool Mask_comp // true if M complemented
) ;
void GB_macrofy_mask
(
FILE *fp, // file to write macros, assumed open already
// input:
int mask_ecode, // enumified mask
char *Mname, // name of the mask
int msparsity, // sparsity of the mask
bool Mp_is_32,
bool Mj_is_32,
bool Mi_is_32
) ;
//------------------------------------------------------------------------------
// enumify and macrofy a monoid
//------------------------------------------------------------------------------
void GB_macrofy_monoid // construct the macros for a monoid
(
FILE *fp, // File to write macros, assumed open already
// inputs:
bool C_iso, // true if C is iso
GrB_Monoid monoid, // monoid to macrofy
bool disable_terminal_condition, // if true, a builtin monoid is assumed
// to be non-terminal. For the (times, firstj, int64)
// semiring, times is normally a terminal monoid, but
// it's not worth exploiting in GrB_mxm.
// output:
const char **u_expression,
const char **g_expression
) ;
bool GB_enumify_cuda_atomic // returns has_cheeseburger
(
// output:
const char **a, // CUDA atomic function name
bool *user_monoid_atomically, // true if user monoid has an atomic update
const char **cuda_type, // CUDA atomic type
// input:
GrB_Monoid monoid, // monoid to query
GB_Opcode add_opcode,
size_t zsize, // ztype->size
int zcode // ztype->code
) ;
void GB_macrofy_query
(
FILE *fp,
const bool builtin, // true if method is all builtin
GrB_Monoid monoid, // monoid for reduce or semiring; NULL otherwise
GB_Operator op0, // monoid op, select op, unary op, etc
GB_Operator op1, // binaryop for a semring
GrB_Type type0,
GrB_Type type1,
GrB_Type type2,
uint64_t hash, // hash code for the kernel
GB_jit_kcode kcode
) ;
//------------------------------------------------------------------------------
// binary operators
//------------------------------------------------------------------------------
void GB_enumify_binop
(
// output:
int *ecode, // enumerated operator, range 0 to 255
// input:
GB_Opcode opcode, // opcode of GraphBLAS operator to convert into a macro
GB_Type_code xcode, // op->xtype->code of the operator
bool for_semiring, // true for A*B multiplier, false otherwise
bool is_kron // true for kronecker
) ;
void GB_macrofy_binop
(
FILE *fp,
// input:
const char *macro_name,
bool flipij, // if true: op is f(x,y,j,i) for ewise ops
bool flipxy, // if true: op is f(y,x) for a semiring
bool is_monoid_or_build, // if true: additive operator for monoid,
// or binary op for GrB_Matrix_build, or
// accum operator
bool is_ewise, // if true: binop for ewise methods
bool is_kron, // if true: binop for kronecker
int ecode, // binary operator ecode from GB_enumify_binop
bool C_iso, // if true: C is iso
GrB_BinaryOp op,
// output:
const char **f_handle, // basic expression z=f(x,y)
const char **u_handle, // update z=f(z,y) for the CPU
const char **g_handle // update z=f(z,y) for the GPU (if different)
) ;
//------------------------------------------------------------------------------
// operator definitions and typecasting
//------------------------------------------------------------------------------
void GB_macrofy_defn // construct a defn for an operator
(
FILE *fp,
int kind, // 0: built-in function
// 1: built-in macro
// 2: built-in macro needed for CUDA only
// 3: user-defined function or macro
const char *name,
const char *defn
) ;
void GB_macrofy_string
(
FILE *fp,
const char *name,
const char *defn
) ;
const char *GB_macrofy_cast_expression // return cast expression
(
FILE *fp,
// input:
GrB_Type ztype, // output type
GrB_Type xtype, // input type
// output
int *nargs // # of string arguments in output format
) ;
void GB_macrofy_cast_input
(
FILE *fp,
// input:
const char *macro_name, // name of the macro: #define macro(z,x...)
const char *zarg, // name of the z argument of the macro
const char *xargs, // one or more x arguments
const char *xexpr, // an expression based on xargs
const GrB_Type ztype, // the type of the z output
const GrB_Type xtype // the type of the x input
) ;
void GB_macrofy_cast_output
(
FILE *fp,
// input:
const char *macro_name, // name of the macro: #define macro(z,x...)
const char *zarg, // name of the z argument of the macro
const char *xargs, // one or more x arguments
const char *xexpr, // an expression based on xargs
const GrB_Type ztype, // the type of the z input
const GrB_Type xtype // the type of the x output
) ;
void GB_macrofy_cast_copy
(
FILE *fp,
// input:
const char *cname, // name of the C matrix (typically "C")
const char *aname, // name of the A matrix (typically "A" or "B")
const GrB_Type ctype, // the type of the C matrix
const GrB_Type atype, // the type of the A matrix
const bool A_iso // true if A is iso
) ;
void GB_macrofy_input
(
FILE *fp,
// input:
const char *aname, // name of the scalar aij = ...
const char *Amacro, // name of the macro is GB_GETA, if Amacro is 'A'
const char *Aname, // name of the input matrix (typically A or B)
bool do_matrix_macros, // if true, do the matrix macros
GrB_Type a2type, // type of aij after casting to x or y of f(x,y)
GrB_Type atype, // type of the input matrix
int asparsity, // sparsity format of the input matrix
int acode, // type code of the input (0 if pattern,
// 15 if A is NULL)
bool A_iso, // true if A is iso
int azombies, // 1 if A has zombies, 0 if A has no zombies;
// -1 if the macro should not be created.
int p_is_32, // if true, Ap is 32-bit, else 64-bit
int j_is_32, // if true, Ah is 32-bit, else 64-bit
int i_is_32 // if true, Ai is 32-bit, else 64-bit
) ;
void GB_macrofy_output
(
FILE *fp,
// input:
const char *cname, // name of the scalar ... = cij to write
const char *Cmacro, // name of the macro is GB_PUT*(Cmacro)
const char *Cname, // name of the output matrix
GrB_Type ctype, // type of C, ignored if C is iso
GrB_Type ztype, // type of cij scalar to cast to ctype write to C
int csparsity, // sparsity format of the output matrix
bool C_iso, // true if C is iso on output
bool C_in_iso, // true if C is iso on input
int p_is_32, // if true, Cp is 32-bit, else 64-bit
int j_is_32, // if true, Ch is 32-bit, else 64-bit
int i_is_32 // if true, Ci is 32-bit, else 64-bit
) ;
void GB_macrofy_bits
(
FILE *fp,
// input:
const char *Aname, // name of the matrix
int p_is_32, // if true, Ap is 32-bit, else 64-bit
int j_is_32, // if true, Ah is 32-bit, else 64-bit
int i_is_32 // if true, Ai is 32-bit, else 64-bit
) ;
//------------------------------------------------------------------------------
// monoid identity and terminal values
//------------------------------------------------------------------------------
void GB_enumify_identity
(
// output:
int *ecode, // enumerated identity, 0 to 31
// inputs:
GB_Opcode opcode, // built-in binary opcode of a monoid
GB_Type_code zcode // type code of the operator
) ;
const char *GB_macrofy_id // return string encoding the value
(
// input:
int ecode, // enumerated identity/terminal value
size_t zsize, // size of value
// output: // (optional: either may be NULL)
bool *has_byte, // true if value is a single repeated byte
uint8_t *byte // repeated byte
) ;
void GB_macrofy_bytes
(
FILE *fp, // file to write macros, assumed open already
// input:
const char *Name, // all-upper-case name
const char *variable, // variable to declaer
const char *type_name, // name of the type
const uint8_t *value, // array of size nbytes
size_t nbytes,
bool is_identity // true for the identity value
) ;
void GB_enumify_terminal // enumify the terminal value
(
// output:
int *ecode, // enumerated terminal, 0 to 31
// input:
GB_Opcode opcode, // built-in binary opcode of a monoid
GB_Type_code zcode // type code of the operator
) ;
//------------------------------------------------------------------------------
// sparsity structure
//------------------------------------------------------------------------------
void GB_enumify_sparsity // enumerate the sparsity structure of a matrix
(
// output:
int *ecode, // enumerated sparsity structure:
// 0:hyper, 1:sparse, 2:bitmap, 3:full
// input:
int sparsity // 0:no matrix, 1:GxB_HYPERSPARSE, 2:GxB_SPARSE,
// 4:GxB_BITMAP, 8:GxB_FULL
) ;
void GB_macrofy_sparsity // construct macros for sparsity structure
(
// input:
FILE *fp,
const char *matrix_name, // "C", "M", "A", or "B"
int sparsity
) ;
void GB_macrofy_nvals
(
FILE *fp,
// input:
const char *Aname, // name of input matrix (typically A, B, C,..)
int asparsity, // sparsity format of the input matrix, -1 if NULL
bool A_iso // true if A is iso
) ;
//------------------------------------------------------------------------------
// typedefs, type name and size
//------------------------------------------------------------------------------
void GB_macrofy_typedefs
(
FILE *fp,
// input:
GrB_Type ctype,
GrB_Type atype,
GrB_Type btype,
GrB_Type xtype,
GrB_Type ytype,
GrB_Type ztype
) ;
void GB_macrofy_type
(
FILE *fp,
// input:
const char *what, // typically X, Y, Z, A, B, or C
const char *what2, // typically "_" or "2"
const char *name // name of the type
) ;
//------------------------------------------------------------------------------
// unary ops
//------------------------------------------------------------------------------
void GB_enumify_apply // enumerate an apply or tranpose/apply problem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// input:
// C matrix:
const int C_sparsity, // sparse, hyper, bitmap, or full. For apply
// without transpose, Cx = op(A) is computed where
// Cx is just C->x, so the caller uses 'full' when
// C is sparse, hyper, or full.
const bool C_is_matrix, // true for C=op(A), false for Cx=op(A)
const GrB_Type ctype, // C=((ctype) T) is the final typecast
const bool Cp_is_32, // if true, Cp is uint32_t, else uint64_t
const bool Ci_is_32, // if true, Ci is uint32_t, else uint64_t
const bool Cj_is_32, // if true, Cj is uint32_t, else uint64_t
// operator:
const GB_Operator op, // unary/index-unary to apply; not binaryop
const bool flipij, // if true, flip i,j for user idxunop
// A matrix:
const int A_sparsity,
const bool A_is_matrix,
const GrB_Type atype,
const bool Ap_is_32, // if true, A->p is uint32_t, else uint64_t
const bool Aj_is_32, // if true, A->h is uint32_t, else uint64_t
const bool Ai_is_32, // if true, A->i is uint32_t, else uint64_t
const bool A_iso,
const int64_t A_nzombies
) ;
void GB_enumify_unop // enumify a GrB_UnaryOp or GrB_IndexUnaryOp
(
// output:
int *ecode, // enumerated operator, range 0 to 254
bool *depends_on_x, // true if the op depends on x
bool *depends_on_i, // true if the op depends on i
bool *depends_on_j, // true if the op depends on j
bool *depends_on_y, // true if the op depends on y
// input:
bool flipij, // if true, then the i and j indices are flipped
GB_Opcode opcode, // opcode of GraphBLAS operator to convert into a macro
GB_Type_code xcode // op->xtype->code of the operator
) ;
void GB_macrofy_unop
(
FILE *fp,
// input:
const char *macro_name,
bool flipij, // if true: op is f(z,x,j,i,y) with ij flipped
int ecode,
GB_Operator op // GrB_UnaryOp or GrB_IndexUnaryOp
) ;
void GB_macrofy_apply // construct all macros for GrB_apply
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
// operator:
const GB_Operator op, // unary/index-unary to apply; not binaryop
GrB_Type ctype,
GrB_Type atype
) ;
uint64_t GB_encodify_apply // encode an apply problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
// C matrix:
const int C_sparsity,
const bool C_is_matrix, // true for C=op(A), false for Cx=op(A)
const GrB_Type ctype,
const bool Cp_is_32, // if true, Cp is uint32_t, else uint64_t
const bool Ci_is_32, // if true, Ci is uint32_t, else uint64_t
const bool Cj_is_32, // if true, Cj is uint32_t, else uint64_t
// operator:
const GB_Operator op, // not JIT'd if NULL
const bool flipij,
// A matrix:
const int A_sparsity,
const bool A_is_matrix,
const GrB_Type atype,
const bool Ap_is_32, // if true, Ap is uint32_t, else uint64_t
const bool Aj_is_32, // if true, Ah is uint32_t, else uint64_t
const bool Ai_is_32, // if true, Ai is uint32_t, else uint64_t
const bool A_iso,
const int64_t A_nzombies
) ;
GrB_Info GB_apply_unop_jit // Cx = op (A), apply unop via the JIT
(
// output:
GB_void *Cx,
// input:
const GrB_Type ctype,
const GB_Operator op, // unary or index unary op
const bool flipij, // if true, use z = f(x,j,i,y)
const GrB_Matrix A,
const void *ythunk, // for index unary ops (op->ytype scalar)
const int64_t *restrict A_ek_slicing,
const int A_ntasks,
const int A_nthreads
) ;
GrB_Info GB_apply_bind1st_jit // Cx = op (x,B), apply bind1st via the JIT
(
// output:
GB_void *Cx,
// input:
const GrB_Type ctype,
const GrB_BinaryOp binaryop,
const GB_void *xscalar,
const GrB_Matrix B,
const int nthreads
) ;
GrB_Info GB_apply_bind2nd_jit // Cx = op (x,B), apply bind2nd via the JIT
(
// output:
GB_void *Cx,
// input:
const GrB_Type ctype,
const GrB_BinaryOp binaryop,
const GrB_Matrix A,
const GB_void *yscalar,
const int nthreads
) ;
GrB_Info GB_transpose_bind1st_jit
(
// output:
GrB_Matrix C,
// input:
const GrB_BinaryOp binaryop,
const GB_void *xscalar,
const GrB_Matrix A,
void **Workspaces,
const int64_t *restrict A_slice,
int nworkspaces,
int nthreads
) ;
GrB_Info GB_transpose_bind2nd_jit
(
// output:
GrB_Matrix C,
// input:
const GrB_BinaryOp binaryop,
const GrB_Matrix A,
const GB_void *yscalar,
void **Workspaces,
const int64_t *restrict A_slice,
int nworkspaces,
int nthreads
) ;
GrB_Info GB_transpose_unop_jit // C = op (A'), transpose unop via the JIT
(
// output:
GrB_Matrix C,
// input:
GB_Operator op,
const GrB_Matrix A,
void **Workspaces,
const int64_t *restrict A_slice,
int nworkspaces,
int nthreads
) ;
GrB_Info GB_convert_s2b_jit // convert sparse to bitmap
(
// output:
GB_void *Ax_new,
int8_t *Ab,
// input:
GB_Operator op,
const GrB_Matrix A,
const int64_t *A_ek_slicing,
const int A_ntasks,
const int A_nthreads
) ;
GrB_Info GB_convert_b2s_jit // extract CSC/CSR or triplets from bitmap
(
// input:
const void *Cp, // vector pointers for CSC/CSR form
// outputs:
void *Ci, // indices for CSC/CSR or triplet form
void *Cj, // vector indices for triplet form
GB_void *restrict Cx, // values for CSC/CSR or triplet form
// inputs: not modified
const bool Cp_is_32, // if true, Cp is uint32_t, else uint64_t
const bool Ci_is_32, // if true, Cp is uint32_t, else uint64_t
const bool Cj_is_32, // if true, Cp is uint32_t, else uint64_t
const GrB_Type ctype, // type of Cx
GB_Operator op,
const GrB_Matrix A, // matrix to extract; not modified
const void *W, // workspace
int nthreads // # of threads to use
) ;
GrB_Info GB_concat_sparse_jit // concatenate A into a sparse matrix C
(
// input/output
GrB_Matrix C,
// input:
int64_t cistart,
const GB_Operator op,
const GrB_Matrix A,
void *W, // integer type matches C->p
const int64_t *restrict A_ek_slicing,
const int A_ntasks,
const int A_nthreads
) ;
GrB_Info GB_concat_full_jit // concatenate A into a full matrix C
(
// input/output
GrB_Matrix C,
// input:
int64_t cistart,
int64_t cvstart,
const GB_Operator op,
const GrB_Matrix A,
const int A_nthreads
) ;
GrB_Info GB_concat_bitmap_jit // concatenate A into a bitmap matrix C
(
// input/output
GrB_Matrix C,
// input:
int64_t cistart,
int64_t cvstart,
const GB_Operator op,
const GrB_Matrix A,
GB_Werk Werk
) ;
GrB_Info GB_split_sparse_jit // split A into a sparse tile C
(
// input/output
GrB_Matrix C,
// input:
const GB_Operator op,
const GrB_Matrix A,
int64_t akstart,
int64_t aistart,
const void *Wp, // 32/64 bit, depending on A->p_is_32
const int64_t *restrict C_ek_slicing,
const int C_ntasks,
const int C_nthreads
) ;
GrB_Info GB_split_full_jit // split A into a full tile C
(
// input/output
GrB_Matrix C,
// input:
const GB_Operator op,
const GrB_Matrix A,
int64_t avstart,
int64_t aistart,
const int C_nthreads
) ;
GrB_Info GB_split_bitmap_jit // split A into a bitmap tile C
(
// input/output
GrB_Matrix C,
// input:
const GB_Operator op,
const GrB_Matrix A,
int64_t avstart,
int64_t aistart,
const int C_nthreads
) ;
//------------------------------------------------------------------------------
// builder kernel
//------------------------------------------------------------------------------
uint64_t GB_encodify_build // encode an build problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
const GrB_BinaryOp dup, // operator for summing up duplicates
const GrB_Type ttype, // type of Tx array
const GrB_Type stype, // type of Sx array
bool Ti_is_32, // if true, Ti is uint32_t, else uint64_t
bool I_is_32, // if true, I_work is uint32_t else uint64_t
bool K_is_32, // if true, K_work is uint32_t else uint64_t
bool K_is_null, // if true, K_work is NULL
bool no_duplicates // if true, no duplicates appear
) ;
void GB_enumify_build // enumerate a GB_build problem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// input:
GrB_BinaryOp dup, // operator for duplicates
GrB_Type ttype, // type of Tx
GrB_Type stype, // type of Sx
bool Ti_is_32, // if true, Ti is uint32_t, else uint64_t
bool I_is_32, // if true, I_work is uint32_t else uint64_t
bool K_is_32, // if true, K_work is uint32_t else uint64_t
bool K_is_null, // if true, K_work is NULL
bool no_duplicates // if true, no duplicates appear
) ;
void GB_macrofy_build // construct all macros for GB_build
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code, // unique encoding of the entire problem
GrB_BinaryOp dup, // dup binary operator to macrofy
GrB_Type ttype, // type of Tx
GrB_Type stype // type of Sx
) ;
GrB_Info GB_build_jit // GB_builder JIT kernel
(
// output:
GB_void *restrict Tx,
void *restrict Ti,
// input:
bool Ti_is_32, // if true, Ti is uint32_t, else uint64_t
const GB_void *restrict Sx,
const GrB_Type ttype, // type of Tx
const GrB_Type stype, // type of Sx
const GrB_BinaryOp dup, // operator for summing duplicates
const int64_t nvals, // number of tuples
const int64_t ndupl, // number of duplicates
const void *restrict I_work,
bool I_is_32, // if true, I_work is uint32_t else uint64_t
const void *restrict K_work,
bool K_is_32, // if true, K_work is uint32_t else uint64_t
bool K_is_null, // if true, K_work is NULL
const int64_t duplicate_entry, // row index of duplicate entries
const int64_t *restrict tstart_slice,
const int64_t *restrict tnz_slice,
int nthreads
) ;
//------------------------------------------------------------------------------
// select kernel
//------------------------------------------------------------------------------
uint64_t GB_encodify_select // encode an select problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
const GrB_Matrix C,
const GrB_IndexUnaryOp op,
const bool flipij,
const GrB_Matrix A
) ;
void GB_enumify_select // enumerate a GrB_selectproblem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// input:
const GrB_Matrix C,
const GrB_IndexUnaryOp op, // the index unary operator to enumify
const bool flipij, // if true, flip i and j
const GrB_Matrix A
) ;
void GB_macrofy_select // construct all macros for GrB_select
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
// operator:
const GrB_IndexUnaryOp op,
GrB_Type atype // also the type of C
) ;
GrB_Info GB_select_bitmap_jit // select bitmap
(
// input/output:
GrB_Matrix C, // C->b and C->nvals are computed
// input:
const GrB_Matrix A,
const bool flipij,
const GB_void *restrict ythunk,
const GrB_IndexUnaryOp op,
const int nthreads
) ;
GrB_Info GB_select_phase1_jit // select phase1
(
// output:
GrB_Matrix C, // C->p computed, with counts
uint64_t *restrict Wfirst,
uint64_t *restrict Wlast,
// input:
const GrB_Matrix A,
const GB_void *restrict ythunk,
const GrB_IndexUnaryOp op,
const bool flipij,
const int64_t *A_ek_slicing,
const int A_ntasks,
const int A_nthreads
) ;
GrB_Info GB_select_phase2_jit // select phase2
(
// input/output:
GrB_Matrix C, // input: Cp; output: Ci, Cx
// input:
const uint64_t *restrict Cp_kfirst,
const GrB_Matrix A,
const bool flipij,
const GB_void *restrict ythunk,
const GrB_IndexUnaryOp op,
const int64_t *A_ek_slicing,
const int A_ntasks,
const int A_nthreads
) ;
//------------------------------------------------------------------------------
// assign/subassign kernel
//------------------------------------------------------------------------------
uint64_t GB_encodify_assign // encode an assign problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
// C matrix:
GrB_Matrix C,
bool C_replace,
// index types:
bool I_is_32, // if true, I is 32-bits; else 64
bool J_is_32, // if true, J is 32-bits; else 64
int Ikind, // 0: all (no I), 1: range, 2: stride, 3: list
int Jkind, // ditto
// M matrix:
GrB_Matrix M, // may be NULL
bool Mask_comp, // mask is complemented
bool Mask_struct, // mask is structural
// operator:
GrB_BinaryOp accum, // the accum operator (may be NULL)
// A matrix or scalar
GrB_Matrix A, // NULL for scalar assignment
GrB_Type scalar_type,
// S matrix:
GrB_Matrix S, // may be NULL
int assign_kind // 0: assign, 1: subassign, 2: row, 3: col
) ;
void GB_enumify_assign // enumerate a GrB_assign problem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// input:
// C matrix:
GrB_Matrix C,
bool C_replace,
// index types:
bool I_is_32, // if true, I is 32-bits; else 64
bool J_is_32, // if true, J is 32-bits; else 64
int Ikind, // 0: all (no I), 1: range, 2: stride, 3: list
int Jkind, // ditto
// M matrix:
GrB_Matrix M, // may be NULL
bool Mask_comp, // mask is complemented
bool Mask_struct, // mask is structural
// operator:
GrB_BinaryOp accum, // the accum operator (may be NULL)
// A matrix or scalar
GrB_Matrix A, // NULL for scalar assignment
GrB_Type scalar_type,
// S matrix:
GrB_Matrix S, // may be MULL
int assign_kind // 0: assign, 1: subassign, 2: row, 3: col
) ;
void GB_macrofy_assign // construct all macros for GrB_assign
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
GrB_BinaryOp accum, // accum operator to macrofy
GrB_Type ctype,
GrB_Type atype // matrix or scalar type
) ;
GrB_Info GB_subassign_jit
(
// input/output:
GrB_Matrix C,
// input:
const bool C_replace,
// I:
const void *I,
const bool I_is_32,
const int64_t ni,
const int64_t nI,
const int Ikind,
const int64_t Icolon [3],
// J:
const void *J,
const bool J_is_32,
const int64_t nj,
const int64_t nJ,
const int Jkind,
const int64_t Jcolon [3],
// mask M:
const GrB_Matrix M,
const bool Mask_comp,
const bool Mask_struct,
// accum, if present:
const GrB_BinaryOp accum, // may be NULL
// A matrix or scalar:
const GrB_Matrix A, // NULL for scalar assignment
const void *scalar,
const GrB_Type scalar_type,
// S matrix:
const GrB_Matrix S, // NULL if not constructed
// kind and kernel:
const int assign_kind, // row assign, col assign, assign, or subassign
const int assign_kernel, // GB_JIT_KERNEL_SUBASSIGN_01, ... etc
const char *kname, // kernel name
GB_Werk Werk
) ;
//------------------------------------------------------------------------------
// macrofy a user operator or type as its own kernel
//------------------------------------------------------------------------------
void GB_macrofy_user_op // construct a user-defined operator
(
// output:
FILE *fp, // target file to write, already open
// input:
const GB_Operator op // op to construct in a JIT kernel
) ;
uint64_t GB_encodify_user_op // encode a user defined op
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_Operator op
) ;
GrB_Info GB_user_op_jit // construct a user operator in a JIT kernel
(
// output:
void **user_function, // function pointer
// input:
const GB_Operator op // unary, index unary, or binary op
) ;
void GB_macrofy_user_type // construct a user-defined type
(
// output:
FILE *fp, // target file to write, already open
// input:
const GrB_Type type // type to construct in a JIT kernel
) ;
uint64_t GB_encodify_user_type // encode a user defined type
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GrB_Type type
) ;
GrB_Info GB_user_type_jit // construct a user type in a JIT kernel
(
// output:
size_t *typesize, // sizeof the type
// input:
const GrB_Type type // user-defined type
) ;
//------------------------------------------------------------------------------
// masker
//------------------------------------------------------------------------------
GrB_Info GB_masker_phase1_jit // count nnz in each R(:,j)
(
// computed by phase1:
void *Rp, // output of size Rnvec+1; 32/64 bit
int64_t *Rnvec_nonempty, // # of non-empty vectors in R
// tasks from phase1a:
GB_task_struct *restrict TaskList, // array of structs
const int R_ntasks, // # of tasks
const int R_nthreads, // # of threads to use
// analysis from phase0:
const int64_t Rnvec,
const void *Rh, // size Rnvec, 32/64 bit
const int64_t *restrict R_to_M,
const int64_t *restrict R_to_C,
const int64_t *restrict R_to_Z,
const bool Rp_is_32, // if true, Rp is 32-bit; else 64-bit
const bool Rj_is_32, // if true, Rh is 32-bit; else 64-bit
// original input:
const GrB_Matrix M, // required mask
const bool Mask_comp, // if true, then M is complemented
const bool Mask_struct, // if true, use the only structure of M
const GrB_Matrix C,
const GrB_Matrix Z
) ;
GrB_Info GB_masker_phase2_jit // phase2 for R = masker (C,M,Z)
(
GrB_Matrix R, // output matrix, static header
// tasks from phase1a:
const GB_task_struct *restrict TaskList, // array of structs
const int R_ntasks, // # of tasks
const int R_nthreads, // # of threads to use
// analysis from phase0:
const int64_t *restrict R_to_M,
const int64_t *restrict R_to_C,
const int64_t *restrict R_to_Z,
// original input:
const GrB_Matrix M, // required mask
const bool Mask_comp, // if true, then M is complemented
const bool Mask_struct, // if true, use the only structure of M
const GrB_Matrix C,
const GrB_Matrix Z,
const int64_t *restrict C_ek_slicing,
const int C_nthreads,
const int C_ntasks,
const int64_t *restrict M_ek_slicing,
const int M_nthreads,
const int M_ntasks
) ;
uint64_t GB_encodify_masker // encode a masker problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
const GrB_Matrix R, // may be NULL, for phase1
const bool Rp_is_32, // if true, R->p is 32 bit; else 64 bit
const bool Rj_is_32, // if true, R->h is 32 bit; else 64 bit
const bool Ri_is_32, // if true, R->i is 32 bit; else 64 bit
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_Matrix C,
const GrB_Matrix Z
) ;
void GB_enumify_masker // enumify a masker problem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// input:
const GrB_Matrix R, // NULL for phase 1
const bool Rp_is_32, // if true, R->p is 32-bit; else 64-bit
const bool Rj_is_32, // if true, R->h is 32-bit; else 64-bit
const bool Ri_is_32, // if true, R->i is 32-bit; else 64-bit
const GrB_Matrix M,
const bool Mask_struct,
const bool Mask_comp,
const GrB_Matrix C,
const GrB_Matrix Z
) ;
void GB_macrofy_masker // construct all macros for GrB_eWise
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
GrB_Type rtype
) ;
//------------------------------------------------------------------------------
// subref methods, C = A(I,J)
//------------------------------------------------------------------------------
uint64_t GB_encodify_subref // encode an subref problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
// C matrix:
GrB_Matrix C,
// index types:
bool I_is_32, // if true, I is 32-bits; else 64
bool J_is_32, // if true, J is 32-bits; else 64 (0 if not used)
int Ikind, // 0: all (no I), 1: range, 2: stride, 3: list
int Jkind, // ditto, or 0 if not used
bool need_qsort, // true if qsort needs to be called
bool Ihead_is_32, // if true, Ihead/Inext 32-bit; else 64
bool I_has_duplicates, // true if I has duplicate entries
// A matrix:
GrB_Matrix A
) ;
void GB_enumify_subref // enumerate a GrB_extract problem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// C matrix:
GrB_Matrix C,
// index types:
bool I_is_32, // if true, I is 32-bit; else 64-bit
bool J_is_32, // if true, J is 32-bit; else 64-bit (bitmap only)
int Ikind, // 0: all (no I), 1: range, 2: stride, 3: list
int Jkind, // ditto, or 0 if not used
bool need_qsort, // true if qsort needs to be called
bool Ihead_is_32, // if true, Ihead/Inext 32-bit; else 64
bool I_has_duplicates, // true if I has duplicate entries
// A matrix:
GrB_Matrix A
) ;
void GB_macrofy_subref // construct all macros for GrB_extract
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
GrB_Type ctype
) ;
GrB_Info GB_subref_sparse_jit
(
// output matrix
GrB_Matrix C, // same type as A
// from phase1:
const GB_task_struct *restrict TaskList, // list of tasks
const int ntasks, // # of tasks
const int nthreads, // # of threads to use
const bool post_sort, // true if post-sort needed
const void *Ihead, // for I inverse buckets, size A->vlen
const void *Inext, // for I inverse buckets, size nI
const bool Ihead_is_32, // if true, Ihead/Inext 32-bit; else 64
const bool I_has_duplicates, // true if I has duplicates
// from phase0:
const void *Ap_start,
const void *Ap_end,
const bool need_qsort,
const int Ikind,
const int64_t nI,
const int64_t Icolon [3],
// original input:
const GrB_Matrix A,
const void *I,
const bool I_is_32
) ;
GrB_Info GB_subref_bitmap_jit
(
// input/output:
GrB_Matrix C,
// input:
GrB_Matrix A,
// I:
const void *I,
const bool I_is_32,
const int64_t nI,
const int Ikind,
const int64_t Icolon [3],
// J:
const void *J,
const bool J_is_32,
const int64_t nJ,
const int Jkind,
const int64_t Jcolon [3],
GB_Werk Werk
) ;
//------------------------------------------------------------------------------
// iso_expand
//------------------------------------------------------------------------------
GrB_Info GB_iso_expand_jit // expand an iso scalar into an entire array
(
void *restrict X, // output array to expand into
const int64_t n, // # of entries in X
const void *restrict scalar, // scalar to expand into X
const GrB_Type xtype, // the type of the X and the scalar
const GB_Operator op, // identity operator
const int nthreads // # of threads to use
) ;
//------------------------------------------------------------------------------
// unjumble
//------------------------------------------------------------------------------
GrB_Info GB_unjumble_jit
(
// input/output:
const GrB_Matrix A,
const GB_Operator op, // identity op, unused
const int64_t *A_slice,
const int ntasks,
const int nthreads
) ;
//------------------------------------------------------------------------------
// sort
//------------------------------------------------------------------------------
uint64_t GB_encodify_sort // encode a sort problem
(
// output:
GB_jit_encoding *encoding, // unique encoding of the entire problem,
// except for the suffix
char **suffix, // suffix for user-defined kernel
// input:
const GB_jit_kcode kcode, // kernel to encode
// input/output
GrB_Matrix C,
// input:
const GrB_BinaryOp binaryop
) ;
void GB_enumify_sort // enumerate a GxB_sort problem
(
// output:
uint64_t *method_code, // unique encoding of the entire operation
// input:
GrB_Matrix C, // matrix to sort
// comparator op:
GrB_BinaryOp binaryop // the binary operator for the comparator
) ;
GrB_Info GB_sort_jit
(
// input/output:
GrB_Matrix C,
// input:
const GrB_BinaryOp binaryop,
int nthreads,
GB_Werk Werk
) ;
void GB_macrofy_sort // construct all macros for GxB_sort
(
// output:
FILE *fp, // target file to write, already open
// input:
uint64_t method_code,
GrB_BinaryOp binaryop, // binaryop to macrofy
GrB_Type ctype
) ;
//------------------------------------------------------------------------------
// kronecker product
//------------------------------------------------------------------------------
GrB_Info GB_kroner_jit
(
// output:
GrB_Matrix C,
// input:
const GrB_BinaryOp binaryop,
const bool flipij,
const GrB_Matrix A,
const GrB_Matrix B,
const int nthreads
) ;
//------------------------------------------------------------------------------
// macrofy for all methods
//------------------------------------------------------------------------------
void GB_macrofy_family
(
// output:
FILE *fp, // target file to write, already open
// input:
GB_jit_family family, // family to macrofy
uint64_t method_code, // encoding of the specific problem
uint64_t kcode, // kernel code
GrB_Semiring semiring, // semiring (for mxm family only)
GrB_Monoid monoid, // monoid (for reduce family only)
GB_Operator op, // unary/index_unary/binary op
GrB_Type type1,
GrB_Type type2,
GrB_Type type3
) ;
#endif
|