1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
//------------------------------------------------------------------------------
// GB_kroner: Kronecker product, C = kron (A,B)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2025, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// C = kron(A,B) where op determines the binary multiplier to use. The type of
// C is the ztype of the operator. C is hypersparse if either A or B are
// hypersparse, full if both A and B are full, or sparse otherwise. C is never
// constructed as bitmap.
#define GB_FREE_WORKSPACE \
{ \
GB_Matrix_free (&Awork) ; \
GB_Matrix_free (&Bwork) ; \
}
#define GB_FREE_ALL \
{ \
GB_FREE_WORKSPACE ; \
GB_phybix_free (C) ; \
}
#include "kronecker/GB_kron.h"
#include "emult/GB_emult.h"
#include "slice/include/GB_search_for_vector.h"
#include "jitifyer/GB_stringify.h"
GrB_Info GB_kroner // C = kron (A,B)
(
GrB_Matrix C, // output matrix
const bool C_is_csc, // desired format of C
const GrB_BinaryOp op, // multiply operator
const bool flipij, // if true, i and j are flipped: z=(x,y,j,i)
const GrB_Matrix A_in, // input matrix
bool A_is_pattern, // true if values of A are not used
const GrB_Matrix B_in, // input matrix
bool B_is_pattern, // true if values of B are not used
GB_Werk Werk
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
GrB_Info info ;
ASSERT (C != NULL && (C->header_size == 0 || GBNSTATIC)) ;
struct GB_Matrix_opaque Awork_header, Bwork_header ;
GrB_Matrix Awork = NULL, Bwork = NULL ;
ASSERT_MATRIX_OK (A_in, "A_in for kron (A,B)", GB0) ;
ASSERT_MATRIX_OK (B_in, "B_in for kron (A,B)", GB0) ;
ASSERT_BINARYOP_OK (op, "op for kron (A,B)", GB0) ;
//--------------------------------------------------------------------------
// finish any pending work
//--------------------------------------------------------------------------
GB_MATRIX_WAIT (A_in) ;
GB_MATRIX_WAIT (B_in) ;
//--------------------------------------------------------------------------
// bitmap case: create sparse copies of A and B if they are bitmap
//--------------------------------------------------------------------------
GrB_Matrix A = A_in ;
if (GB_IS_BITMAP (A))
{
GBURBLE ("A:") ;
GB_CLEAR_MATRIX_HEADER (Awork, &Awork_header) ;
GB_OK (GB_dup_worker (&Awork, A->iso, A, true, NULL)) ;
ASSERT_MATRIX_OK (Awork, "dup Awork for kron (A,B)", GB0) ;
GB_OK (GB_convert_bitmap_to_sparse (Awork, Werk)) ;
ASSERT_MATRIX_OK (Awork, "to sparse, Awork for kron (A,B)", GB0) ;
A = Awork ;
}
GrB_Matrix B = B_in ;
if (GB_IS_BITMAP (B))
{
GBURBLE ("B:") ;
GB_CLEAR_MATRIX_HEADER (Bwork, &Bwork_header) ;
GB_OK (GB_dup_worker (&Bwork, B->iso, B, true, NULL)) ;
ASSERT_MATRIX_OK (Bwork, "dup Bwork for kron (A,B)", GB0) ;
GB_OK (GB_convert_bitmap_to_sparse (Bwork, Werk)) ;
ASSERT_MATRIX_OK (Bwork, "to sparse, Bwork for kron (A,B)", GB0) ;
B = Bwork ;
}
//--------------------------------------------------------------------------
// get inputs
//--------------------------------------------------------------------------
GB_Ap_DECLARE (Ap, const) ; GB_Ap_PTR (Ap, A) ;
GB_Ah_DECLARE (Ah, const) ; GB_Ah_PTR (Ah, A) ;
const int64_t avlen = A->vlen ;
const int64_t avdim = A->vdim ;
const int64_t anvec = A->nvec ;
const int64_t anz = GB_nnz (A) ;
GB_Bp_DECLARE (Bp, const) ; GB_Bp_PTR (Bp, B) ;
GB_Bh_DECLARE (Bh, const) ; GB_Bh_PTR (Bh, B) ;
const int64_t bvlen = B->vlen ;
const int64_t bvdim = B->vdim ;
const int64_t bnvec = B->nvec ;
const int64_t bnz = GB_nnz (B) ;
//--------------------------------------------------------------------------
// determine the number of threads to use
//--------------------------------------------------------------------------
double work = ((double) anz) * ((double) bnz)
+ (((double) anvec) * ((double) bnvec)) ;
int nthreads_max = GB_Context_nthreads_max ( ) ;
double chunk = GB_Context_chunk ( ) ;
int nthreads = GB_nthreads (work, chunk, nthreads_max) ;
//--------------------------------------------------------------------------
// check if C is iso and compute its iso value if it is
//--------------------------------------------------------------------------
GrB_Type ctype = op->ztype ;
const size_t csize = ctype->size ;
GB_void cscalar [GB_VLA(csize)] ;
bool C_iso = GB_emult_iso (cscalar, ctype, A, B, op) ;
//--------------------------------------------------------------------------
// allocate the output matrix C
//--------------------------------------------------------------------------
// C has the same type as z for the multiply operator, z=op(x,y)
uint64_t cvlen, cvdim, cnzmax, cnvec ;
bool ok = GB_int64_multiply (&cvlen, avlen, bvlen) ;
ok = ok & GB_int64_multiply (&cvdim, avdim, bvdim) ;
ok = ok & GB_int64_multiply (&cnzmax, anz, bnz) ;
ok = ok & GB_int64_multiply (&cnvec, anvec, bnvec) ;
ASSERT (ok) ;
if (C_iso)
{
// the values of A and B are no longer needed if C is iso
GBURBLE ("(iso kron) ") ;
A_is_pattern = true ;
B_is_pattern = true ;
}
// C is hypersparse if either A or B are hypersparse. It is never bitmap.
bool C_is_hyper = (cvdim > 1) && (Ah != NULL || Bh != NULL) ;
bool C_is_full = GB_as_if_full (A) && GB_as_if_full (B) ;
int C_sparsity = C_is_full ? GxB_FULL :
((C_is_hyper) ? GxB_HYPERSPARSE : GxB_SPARSE) ;
// determine the p_is_32, j_is_32, and i_is_32 settings for the new matrix
bool Cp_is_32, Cj_is_32, Ci_is_32 ;
GB_determine_pji_is_32 (&Cp_is_32, &Cj_is_32, &Ci_is_32,
C_sparsity, cnzmax, (int64_t) cvlen, (int64_t) cvdim, Werk) ;
GB_OK (GB_new_bix (&C, // full, sparse, or hyper; existing header
ctype, (int64_t) cvlen, (int64_t) cvdim, GB_ph_malloc, C_is_csc,
C_sparsity, true, B->hyper_switch, cnvec, cnzmax, true, C_iso,
Cp_is_32, Cj_is_32, Ci_is_32)) ;
//--------------------------------------------------------------------------
// compute the column counts of C: Cp and Ch if C is hypersparse
//--------------------------------------------------------------------------
GB_Cp_DECLARE (Cp, ) ; GB_Cp_PTR (Cp, C) ;
GB_Ch_DECLARE (Ch, ) ; GB_Ch_PTR (Ch, C) ;
#define GB_Cp_IS_32 Cp_is_32
if (!C_is_full)
{
// C is sparse or hypersparse
int64_t kC ;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (kC = 0 ; kC < cnvec ; kC++)
{
const int64_t kA = kC / bnvec ;
const int64_t kB = kC % bnvec ;
// get A(:,jA), the (kA)th vector of A
const int64_t jA = GBh_A (Ah, kA) ;
const int64_t aknz = (Ap == NULL) ? avlen :
(GB_IGET (Ap, kA+1) - GB_IGET (Ap, kA)) ;
// get B(:,jB), the (kB)th vector of B
const int64_t jB = GBh_B (Bh, kB) ;
const int64_t bknz = (Bp == NULL) ? bvlen :
(GB_IGET (Bp, kB+1) - GB_IGET (Bp, kB)) ;
// determine # entries in C(:,jC), the (kC)th vector of C
// int64_t kC = kA * bnvec + kB ;
// Cp [kC] = aknz * bknz ;
GB_ISET (Cp, kC, aknz * bknz) ;
if (C_is_hyper)
{
// Ch [kC] = jA * bvdim + jB ;
GB_ISET (Ch, kC, jA * bvdim + jB) ;
}
}
int64_t nvec_nonempty ;
GB_cumsum (Cp, Cp_is_32, cnvec, &nvec_nonempty, nthreads, Werk) ;
GB_nvec_nonempty_set (C, nvec_nonempty) ;
C->nvals = GB_IGET (Cp, cnvec) ;
if (C_is_hyper) C->nvec = cnvec ;
}
C->magic = GB_MAGIC ;
//--------------------------------------------------------------------------
// C = kron (A,B) where C is iso and/or full full
//--------------------------------------------------------------------------
if (C_iso)
{
// C->x [0] = cscalar = op (A,B)
memcpy (C->x, cscalar, csize) ;
if (C_is_full)
{
// no more work to do if C is iso and full
ASSERT_MATRIX_OK (C, "C=kron(A,B), iso full", GB0) ;
GB_FREE_WORKSPACE ;
return (GrB_SUCCESS) ;
}
}
//--------------------------------------------------------------------------
// quick return if C is empty
//--------------------------------------------------------------------------
int64_t cnz = GB_nnz (C) ;
if (cnz == 0)
{
GB_FREE_WORKSPACE ;
return (GrB_SUCCESS) ;
}
//--------------------------------------------------------------------------
// C = kron (A,B)
//--------------------------------------------------------------------------
// via the JIT kernel
info = GB_kroner_jit (C, op, flipij, A, B, nthreads) ;
if (info == GrB_NO_VALUE)
{
// via the generic kernel
#define GB_A_TYPE GB_void
#define GB_B_TYPE GB_void
#define GB_C_TYPE GB_void
#define GB_A_ISO A_iso
#define GB_B_ISO B_iso
#define GB_C_ISO C_iso
const bool A_iso = A->iso ;
const bool B_iso = B->iso ;
const int64_t asize = A->type->size ;
const int64_t bsize = B->type->size ;
GxB_binary_function fmult = op->binop_function ;
GxB_index_binary_function fmult_idx = op->idxbinop_function ;
const void *theta = op->theta ;
GB_cast_function cast_A = NULL, cast_B = NULL ;
if (!A_is_pattern)
{
cast_A = GB_cast_factory (op->xtype->code, A->type->code) ;
}
if (!B_is_pattern)
{
cast_B = GB_cast_factory (op->ytype->code, B->type->code) ;
}
#define GB_C_IS_FULL C_is_full
#define GB_DECLAREA(a) GB_void a [GB_VLA(asize)]
#define GB_DECLAREB(b) GB_void b [GB_VLA(bsize)]
#define GB_GETA(a,Ax,p,iso) \
{ \
if (!A_is_pattern) \
{ \
cast_A (a, Ax + (p)*asize, asize) ; \
} \
}
#define GB_GETB(b,Bx,p,iso) \
{ \
if (!B_is_pattern) \
{ \
cast_B (b, Bx + (p)*bsize, bsize) ; \
} \
}
#define GB_KRONECKER_OP(Cx,pC,a,ix,jx,b,iy,jy) \
{ \
if (fmult != NULL) \
{ \
/* standard binary operator */ \
fmult (Cx +(pC)*csize, a, b) ; \
} \
else \
{ \
/* index binary operator */ \
if (flipij) \
{ \
fmult_idx (Cx +(pC)*csize, \
a, jx, ix, b, jy, iy, theta) ; \
} \
else \
{ \
fmult_idx (Cx +(pC)*csize, \
a, ix, jx, b, iy, jy, theta) ; \
} \
} \
}
#define GB_GENERIC
#include "ewise/include/GB_ewise_shared_definitions.h"
#include "kronecker/template/GB_kroner_template.c"
info = GrB_SUCCESS ;
}
//--------------------------------------------------------------------------
// remove empty vectors from C, if hypersparse
//--------------------------------------------------------------------------
if (info == GrB_SUCCESS)
{
GB_OK (GB_hyper_prune (C, Werk)) ;
ASSERT_MATRIX_OK (C, "C=kron(A,B)", GB0) ;
}
//--------------------------------------------------------------------------
// return result
//--------------------------------------------------------------------------
GB_FREE_WORKSPACE ;
return (info) ;
}
|